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Introduction

Magnetic resonance is normally very much broadened if a ferrimagnetic
sample is immersed in a spatially non-uniform field. Experimentalists measur-
ing fundamental resonance parameters take great pains therefore to employ
ellipsoidal sample shapes (usually small spheres) that are positioned in fields
of very high uniformity. Because surface roughness is known to cause scatter-
ing from the uniform mode to degenerate spinwaves of short wavelengths, there-
by increasing the resonance linewidth, additional effort is expended in polish-
ing the surfaces to optical tolerances.

Commercial manufacturers of tunable microwave, yttrium iron garnets (YIG)
filters avail themselves of this knowledge and employ uniformly magnetized,
highly polished spherical single crystals in their designs.

From this perspective it is therefore remarkable that we at MIT observed
extremely sharp resonances of a very localized character in single crystal YIG
slabs and films that encounter highly uniform bias fields. On the other hand,
it has been known for some time that magnetoelastic waves can be highly focussed
by, and propagate with low loss in, steep magnetic field gradients., One view of
the high Q resonance is that magnetostatic mode patterns are formed for which
the resonant energies are highly confined to certain regions or "tracks" within
the crystal that allow wave propagation around them. If the mode amplitudes
are very small at the edges and corners of the sample, the surface scattering
(which one would expect to be enormous) is largely prevented; consequently the Q
of the resonance is governed primarily by the intrinsic linewidth of the bulk
crystal together with normal circuit loading considerations. In effect,
appropriately designed magnetic field profiles create surfaces of discontinuity
where there are no actual surfaces; surface wave propagation at such "surfaces"
should be free of many of the drawbacks and loss mechanisms encountered at true
surfaces., It has been our intent to learn how to characterize, control and
efficiently couple to such modes so that one can create a new class of microwave
magnetically~tunable resonance filters,

Our research goals concerned Magnetoelastic Delay Line and Magnetostatic
Mode/Wave Synthesis; we separately enumerate our results for each of these two

major topics.
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Synthesized Magnetoelastic Delay Lines

Time Prism Filters

The basis for the research program in magnetoelasticdelay line synthesis
that was undertaken for the Air Force by the MIT Microwave and Quantum Magnetics
Group under Contract F196283-79-C-0047 is contained, in the following paper that
is included for completeness.

The dc field synthesis techniques were developed at M.I.T, by the principal
investigator and culminated in U.S. Patent # 4,093,929 dated June 6, 1978.

The Tinearly dispersive delay lines (Time Prism Filters) cited were fabricat-
ed and measured by Dr., A. Platzker at Chu Associates, Littleton, Massachusetts
who was then a concurrent member of the Microwave and Quantum Magnetics Group.

Field Gradient control of spatially localized magnetostatic resonances is

covered by U.S. Patent 4,152,676, May 1, 1979 (Morgenthaler and Zeskind).




MAGNETIC FIELD SYNTHESIS PROCEDURES
FOR MAGNETOSTATIC AND MANETOELASTIC DEVICES*

F.R. Morgenthaler and A. Platzker

Department of Electrical Engineering and Computer Science,

Magsachusetts Institute of Technology, Cambridge
Chu Associates, Littleton, Mass. 1460

ABSTRACT

Certain types of magnetostatic and/or magneto-
elastic devices require nonuniform dc bias fields
of sufficient strength to locally saturate the
active ferrite element.

We here review a synthesis procedure for cy-
lindrically symmetric geometries that allows pre-
specification of the field either on the symmetry
axis or on a plane perpendicular to it.

The method is then applied to the cases of
both a thin fi{lm disk magnetized normally to its
plane and microwave magnetoelastic delay line
designed for linear frequency dispersion over
wide bandwidths.

Finally, we report comstruction details and
test data on an actual packaged device having
greatly improved characteristics. Measured para-
meters for two-port operatiom at S-band over a
1 GHz. bandwidth include a linear dispersion fac-~
tor D=.3 nsec/MHz. and an insertion loss (untuned)
of 27-30 Db.

INTRODUCTION

Although many magnetic resonance devices ldeal-
ly operate with a dc magnetic field bias that is
spatially uniform, there are a number of magneto-
static and magnetoelastic wave devices that either
require or benefit from nonuniform dc¢ fields. Al-
though the equations governing the dc magnetic
field within a locally saturated ferrimagnet are
well known and can be solved numerically for any
set of boundary conditions that force uniqueness,
the solution when found may not be the field re-
quired for proper device operation. FortanCely,

a synthesis procedure has been formulated: that al-
lows one to specify the desired field along axes or
planes of symmetry and then work outward to find,
first, the entire field within the magnetic mater-
ial, second, appropriate high permeability pole
pieces or current windings capable of sustaining
that field.

We first descridbe the synthesis procedure and
show how to produce prescribed nonuniform radially
symsetric dc flelds in a normally magnetized thin
film, We then apply the method to high perfor-
mance magnetoelastic linearly dispersive delay
lines that employ cylindrical crystals of yttrium
iron garnet (YIG).

SASIC EQUATIONS

Within a current free magnetic material, and

Mass. 02139 and

neglecting crystalline anisotropy, the dc H-field
is both curl free and parallel to the magnetiza-
tion vector, M. If the latter 1s assumed locally
saturated to a uniform value M, it follows in tems

- of the scalar magnetic potential y

that i =7y 48]
and H o= MW | Ty @

The final constraint is V~uo(ﬁ+ﬁ) = 0, there-
fore

Vo[(/ 19y W) = 0 3

Although this equation can be solved numeric-
ally subject to any set of boundary conditions
that force a unique solution, the analysis of such
a boundary value problem is often tedious. More-
over, and of greater importance, the H-field, when
found, may not be that which is desired. Then,
the boundaries must be modified, the field recom-
puted and so on in an {terative "cut and try" man-
ner. It would appear to be much more difficult to
carry out field synthesis rather than analysis.
However, the synthesis of a desired field is actu-
ally a much simpler problem.

In essence, the procedure starts by assuming
the specified field to exist along an axis or_
plane of symmetry for which the direction of M
can be deduced. The potential iy is then expanded
in an appropriate series within the magnetic re-
gion. This portion of the synthesis is termed the
"inner”-field determination and is carried out
without regard to the boundaries of the magnetic
material. The next stage of the procedure involves
expanding, in a convenilent series, the Laplacian
potential in the nonmagnetic region outside of
some agssumed boundary surface. The coefficients
of the "outer"-field potential are next matched to
those of the "inner"-field so as to satisfy, in a
least-squares sense, the proper boundary-conditions.

Finally, we design high-permeability pole-
pleces or curreunt sheets that when suitably ener-
glzed will create the outer and hence also the in-
ner field.

AN QVERVIEW OF THE SYNTHESIS PROCELURE

Although more general situations also can be
treated by similar methods, we here restrict our
discussion to cylindrically symmetric, fields when
the material shape is a cylinder or disk. There
are then two cases of particular interest. They
result from specification of the H-field along
either the axis of symmetry Hz(o,z) or an appro-

priate plane perpendicular to that axis (Hz(r,zo)L




The synthesis procedure can be divided into the

following steps:

1. Find the H-field that meets the on-axis or on-
plane field requirement inside of the cylinder
of length L and radius R for specified magne-
tization M.

2. Choose a convenient series expansion for the
Laplacian scalar potential outside of the cy-
linder and match boundary conditions over the
entire surface. Solve for the coefficients of
the outer potential. It may prove useful to
subdivide the outer region and carry out a se-
parate a match for each subregion.

3. Plot the equipotentials of the outer fieid and
choose two (or more) that are appropriate to
serve as surface contours of high permeability
magnetic pole pieces. If subdivision of the
outer region has been utilized, pole pileces
must in general touch the materisl at the divi-
sion points so as to 1isolate the various outer
subregions.

4. Alternatively, if a solenoid is to be used to
generate the field without benefit of magnetic
pole plecas, the filald outside of the winding
surface must be chosen with continuous normal
flux and vanish as r+« ., The discootinuity in
the tangential field then determines the sur-
face electric current density and hence wind-
ing design,

5. 1f a satisfactory design does not result from
the synthesis procedure, one can alter the as-
sumed material boundary surface and/or the
"outer"-field expansion and try again.

It 1{s important to reallze that althcugh
an infinite number of combinarions of material
size, shape and pole piece degigns exist, all
of which would create the desired field, ouce
one has been chosen the field it creates is
unique.1

INNER FIELD
Because symmetry dictates that both Hr(o,z)

and Mr(o.z) must vanish, and the axis (r=0) is as-

sumed nonsiangular, an appropriate expansion of the
potential within the magnetic material is

2u
Y= ,,Z.Q‘zn(z) r ()

Jne could substitute Eq. (4) into Eq. (3) and ex-
pand the result so as to find a, in terms of a

and {ts derivatives and so on. However, 1t is
more convenient to separately expand M as

ST 2n - 2u+ 1
MM, LB d2yr™ 4L Tobage1(2)r ] (s

and require |ﬁ1 =M, Ml = 0, and 7.B » 0. The
result is three sets of constraints, respectively

s
ELSZﬂ b[Z(s-n)+1]'2(s+1~n)32(s+1-n)b2n] = 0 (ha)

'[b2n+1 2(s-n)+l 2nb2(s+l-n)]+b b2(s+l) =0 (6b)

2
4(s+l)"a *-2(s+l)Hb2 23+Hb 24 = O (6c)

2(s+1)

where the primes denote differentiation with Jres=
pect to z and s=0, 1,2,3,... In additios, b‘- 1

and LR °>C. In order to ensure local saturacion,
aé is efther positive or negative definite over
the interval; we take a;>0 and b°-+l without ioss

cf generality. Eqs. (6) yleld, for each value of

s:bs*l, LI and bs+2 in terms of the lower order

a3 and b coefficients and their derivatives. There-
fcre one srarts with s=0 and proceeds upwards to
generate as many terms as are needed. For s=0

bl-'-a;/Z(a;+H) (7a)
ag= alby/2 (75)
b=~ b%/Z (7¢)

Provided a;(z) is either specified or can be de-
duced, the various functions a9, constitute the

desired solution of Eq. (3). The number of terms
required to satisfactorily approximate the field
depends upon the extent of r, the value of M and
the particular function as.

If the material has uniaxial magnetic anis-
tropy oriented along the z-axis, the procedure can
be generalized by replacing in Eq. (6a)

2K

R \1 b2a

where Ko is the uniaxial anisotropy comscant.
(Ka<0 easy axis; R5>0 easy plane). If the anis-

tropy s not uniaxial with respect to the z-axis,
(as for example a cubic material with [100] or
{i11] orientation) the formulationm may stiil be

used by replacing KO with an appropriate effective

value provided the radial component of M is not
00 large, If Mr/Mz is large, the field is, of

course, naot strictly cylindrically symmetric.

The expansion of Eq. (4) 1is very helpful when
the on-axis field is what is specified because
then aé(z) is known. On the other hand, if
Hz(r,zo) is specified'an alternace approach is pre-
ferable. In this case we expand y as

yma, (D)4, (1) (2-2,)+a, (1) (z-z°)2+. .. (8)

with a,(r)-Hz(r.zo) and assurance chat a;(O)-O
for all a.
THE OUTER FREE SPACE POTENTIAL

If the 2-axis passes through aa outer, field
sutregion, the Laplacian outer-potential y for
that subregion may be taken nomsingular over all
z and cxpanded in the form

l'(z) r' ll,'(z) h
9 - a (2)- ?ITTT— (2} + ?5777— { - ... (9)

Naturally, 1f ao is taken to be (3%2) (kz) or

(gégﬁ) (kz) @ factors iato the product of ;o

3

.




and elther Io(kr) or J o(kr). However, the usual

cylinder functions ars not especially convenient
because our boundary specification does not laad
readily to indentificscion of eigenvalues of k.

Yor io'ln, Eq. (9) gensrates che sect of poly~
nomials ?;(r,:) that satisfy the recurrence formuls

e B 1 7y

-l 2,2
a1 " m BTYTORL,

With Pa=l, it follovs that pre(riea )™ 2% com)

whers tanf= r/z and P: is che associated Legendre

function of degres n snd order zero.

For subregilons of the outer field that do got
contain the z-axis, solutions with & logarithmic
singularity at r=0 sre often halpful. In such
casss, we employ tha st of polynonmials q:(r,z)

that satisfy the recurrence formula

2n-1 a-1 ,.2,..2 2
QB2 s Qe - T GTHOQ ) 5 PRy
wvith Q; » (1 + inz)

It is also permissable and oftsn advantageous
to utilize in ths expansion axial multipolss of
the form

-}
i (a2 )/ e 1) me0, 102,00

ss long as their locations r=0, e, ars anyvhere

within the material doundary.

We plan to use iron pols pisces to ansrgize all
of the synthesized fields described in this paper,
therfors the behaviour of the polynomials at large
distances, from the origin is no detsrrent o ex-
panding yin any outer region ase

N-1
clQ* (10s)

N
e C°+ uzl cn?; + ngo a'a

or what {s sxactly equivalent if CQ-O

¥ an/2
v n=-2%_2k
Ve n:_o k-rO [cn+c;1(1nr+q‘) JAn.k" T (10v)
where
A " =1 k ni .
a 1

and ' (n=2K) 1 (k1) 4

1 k=0

Qk- <
L 1-1 + 1/2 + 1/3 + .,..1/0) k21

and n* is the aven integer a or n=1.
BOUNDARY CONDITIONS

SO A
Secause the sample shape is here restrictad to

be & tight circular cylinder (or disk) of radius R

and length L, it is bensficial to subdivide the

outsf region at the corngrs and carry out threae

separsts expansions for y . Those for s<0 and

2>l cannot contain Q" functioms. -
Prom the "inner" field synchesis we know i

and M sverywhers within the cylinder. We consider

the radial match at r=R and the and satch at z=0

—— — ——

or sl separatsly.
Radial Match

v ——————

Wea wish to sxpand H‘(z,a) and (Hr¢ﬁr)(z,a) in
power serias form

N1

(30 = Lo &/n? (210
and N-1 a

(8,44 (2,8) = Iy 8(2/L) (11b)

whers ¥ is the number of terzs that will produce
a folerable error, Although 3, and sn could be

found from matching terms of & Taylor series, ve
often find it prefersble to calculate theo from
a least squares f.t, using the inverse Hildbert
Matrix of order N.

In terme of ap and Bqe the coefficlents C1 and

C; ars then found to satisfy

cp-ap_ll(php'l) - (tnRe1)C! (12a)
TP a2 A (e +(inRre)C! L]
k=1 2s T at-a % Utk
o P o
’ - {9
crers 17 - T R AL, (2 (125)

(Lnn+°k)c$+kj + C;+k}
Notice that for a given valus of a, C and C; de~
pend only on the values of C and C' with p>n.
Therefors, since by dasign c&-o, Eq, (12a) izmedia-
tely yleldse CN' Thareafter, altsraating between

Eqs. (12b) and (12a) for successively decraassing
valuas of p, produces an unravelling that calcu-
1

. Cf . .
lates in order CN' CN-l' C&_z. CS-Z’ e e Co'

The valua of ca {s iomaterial and can be set o
sny convenisat value including zero.
End Match

In a like manner, the cuter potentials for
2<0 or z>L can be expanded as

- nr/2

Vond™ § 150 Cohayk® 2, 2 250 (130)
and

~ ar/2

Vend® § o Cabq (310" &2k (138)

Tor the 2«0 end face, matching Vsnd H‘+Mz gives

ln(OJ

——

A
™8 (14)

n aven

'n-1(°)+ﬁbn_1(0) n odd

A ————————————

An.n-l



vhers L and bn satisfy Eas. (§). Similar equa-

tions result for the 2oL end Zace.

As an sxample, assums that the on-axis field
in & cylinder of radius Rel.5mm and length Lelm
is required to bs

Hz(o.:) = 300 + 3Q0z Qs.

when the saturation magnetization expressed in
gaoss is 4T = 1780G.

A plot of both aquipotentials that pass throwgh
the corner (r=R, 2=0) of the cylinder detsrminas
a region that can be made the same potential by
foruing it of high permeabilicy iron. The man~
ner in which the outer=fisld is subdivided by ths
pole-piece that touchss the r=R, 2=0 edge is
shown 4n Fig. 1. Of course, this technique is
not feasibls should the end match equipotential lie
below that of the radisl-match potential.

Alr
Fe
Alr

Fa
Fe

YIG

° L

Pig. 1 Pola pieces that syntnasize a

linear fisld profile on the axis of &
YIG cylinder.

SYNTHESIS OF Hz(r) IN A VERY THIN DISK

In order to normally magnetize a& very thin disk
of magnetization M o as to produce, within it, a
prescribed field H,(r), it is necessary to first
axpsad it in the form

2n
B(e<t) = Loa, r (18)

12 the film 1s located st the plane 2z=0 and the
outer-potential is expanded ae

ve L

Y ® n20 Cane1 PReer (5B (16)
the boundary conditions can be matched (neglecting
fringing at the rim) provided Cl"% + M and

a L}
IOV Y

c n2l an
2+l (2n+1) ! 2n
SYNTHESIZED LINEARLY DISPERSIVE MAGNETOELASTIC
DELAY LINES

We have used the synthesis procedure outlined
above to design and build a special class of mag-
netoelastic delay lines, namely, linearly disper-
sive delay lines !12h wide instantansous bandwidth,
Seversl sttempts “”" have been made in the past

to realize such devices but their succses vas very
limited. The difficulty lies in the fact that the
required f{eld profils is not achievable in sizmple
YIG gesometrias immersed in & uniforz biss magne-
tic fisld, In contrast, we have prsviously rspor-
ted? success ia synthasizing laboratory dalay lihes
and wish here to report our further progress.

Pirst, we reviaw the underlying physicsl pris-
ciples of nagnatoelastic delay lines and emphasizae
the sress of importancs for improved davics opers-
tion which require further undarstanding. Next,
we give design parametars., Third, and last, ve
supply details of devics construction and reporc
measured characteristics.

DEVICE PHYSICS

In casea where the internal magentic field
varies slowly enough, spatially, an expansion of
the rf fields and magnetization in terms of plane
vaves is still possible. Howaver, the propagation
constant k associsted with the wave peckst then
varies with position, At sach internsl point z
of the single crystal YIG rod, the frequency of
the z=directad magnetic spin waves is given by

wlvu, = () + A/ + k2 (28)
where H(2) is the internsal magnetic field, v is
the gyromagnetic ratio, and A,D are constants ap-
propriate to the matarisl. Ths above ralaticn is
& simplification only. In reality thers is s
multitidea of modes i{nversely proportional to &k, as
shown {n P{g., 2a. Also shown in the figure i{s the
w/k relation of the shear slastic vave which ia

“coupled to the spin waves., This coupling gives
rise to the splitting at the crossovsr point; L.s.
the point whers the unperturbed frequency values
are equal, The longitudinal slastic wave is not
important to the delay line operation and i{s there-
fors omittead from the figure. Inzch. region of
small k, the dominant term 1s A/k” and the group
velocity vg-&nlak is negative, Tha wave in this

region is called & duckward magnatostatic wave
(BMW). In the high % region the group valocity
{s poaitive and the wave thers is terxzed exchange
spin wave (SW).

To understand the opsration of the single end-
ed delay line, we follow the path of a particu-
lar wvave packat of fresquancy w. inside the magne-
tic medium as shown {n Fig., 2b. The path of the
wave starts very near the facs of the rod (point
A in Pig. 2b) in the form of a very low k, back-
ward magnetic wvave. This wave is gensrated by an
elactromagnetic signal applied to an entanna plac-
od in close proximity to the face of the rod. As
the wave packat rapidly penstrates into the rod
it encountars & menotonically increasing magnezic
f1ald, The initial group (or energy) velocity is
very high but dlctll!’z rapidly until k rsaches
the value kT = (A/D) where the velocity 1s

gero. This point termed the turning point s

tha point of furthest penetration of the wave into
the tod (point 3 in Pilg. 2b), A schematic repre-
sentation of the group velocity ve. time is shown
in Fig. 2c¢. The time spent in the BMW region is
very short, on the order of a few nanoseconds snd
will henceforth be neglected in ths calculation of




the total delay time.

This omission should not be construed as an in-
dication that the BMW region is of little impor=-
tance in the operation of the delay line. On the
contrary, this region where the wave packet initi-
ally forms i{s of crucial importance to efficient
delay line operation. Unfortunately, the com-
plicated processes associated with the formation
and propagation of the wave in this region are
understood only qualitatively and in scant detail
If the magnetic field gradient is comparatively
small® at the turning point, k will suffer no
discontinuity and its magnitude will continue to
increase. Except for a small reflection, the
bulk of the energy continues along a path of in-
creasing (k) into the exchange spin wave regiom.

The wave trajectory is now toward the froat
face of the rod in the direction of decreasing
magnetic field. In this SW region, it is neces-
sary to consider both the radial and axial compo-
nents of the magnetic field. Certain radial dis-
tributions tend to bend the wave away from the
axis, that is defocus the <oherent energy beam
while other profiles tend to focus it toward the
axis. It is very i{mportant to ensure the exis-
tance of focussing conditions since very high propa-
gation losses occur otherwise. Too much focussing,
on the other hand, is counterproductive since it
saturates the propagation channel by creating loc-
al regions of extremely small cross-section and thus
of high energy demsity. This tendency to premature
saturation limits the power handling capabilities
of the delay line and hence its useful dynamic
range,

The determination of whether a focussing or a
defocussing condition exists may be made by evalua-
ting a dimentionless quantity Q that is a function
of the H-field and its first and second spatial der-
ivatives, evaluated at the axial point z under con-
sideration®. A concave field profile (H'<0) auto-
matically ensures focussing but a slightly convex
profile is also allowed.

Provided a focussing condition exists, the beam
propagates to the left until k reaches the value
k:-u/v, where v is the velocity of the elastic

shear wave. This is defined as the cross-over
point where the unperturbed frequencies of the elas-
tic and spin waves are equal (point C in Fig.2b).
The distance between the turning point and the
cross over point traversed in this region is very
small, but the wave on the other hand i3 a slow oe
with 1ts maximum velocity reached at the cross over
point. As a result, the time spent in the SW re-
glon accounts for a major portion of the total de-
lay time (more than half in the case of a linearly
varying field profile). Represemtative values of
the distance and velocity for YIG at 4 GHz and a
magnetic field gradient of 10% 0e/cm ave 20mm for
the distance and 1.15x10" cm/sec for the maximum
velocity. This velocity is only 3% of the shear
elastic wave velocity.

The coupling between the spin wave and the
elastic wave causes a substantial conversion of the
spin wave packet into an elastic shear wave at the
cross-over point. Under the same stipulations as
before, namely that the field gradient 1s not too
steep, very high conversion efficiencies are pos-
sible. The elastic wave continues to propagate

unaffected by the magnetic field towards the face
of the rod where it undergoes a reflection i{n the
highly polished surface (point D in Fig. 2b). From
this point the wave packet retraces its former
steps through the SW and BMW regions and 1is picked
up at the surface in the form of an electromagne-
tic wave. This may be done by the same antenna
used to launch the ipput signal, or by another
antenna placed in close proximity to it when two
port operation is desired. The delayed signal
whose rather complex trajectory we have just fin-
ished describing, is the main output of the deiay
line, the so called lst echo. Not all the wave
energy, however, 1is extracted by the receiving an-
tenna and the unextracted portion is launched back
into the crystal to arrive back at the rod face

as a 2nd echo, This spurious signal is delayed by
twice the delay of the 1lst echo and is of reduced
amplitude. Higher-order echoes exist as well at
further reduced amplitudes.

When two port operation of the single ended
delay line is required, the direct electromagne-
tic feed the rough between the input and output
antennae which are at close proximity causes an-
other spurious output signal. This sometimes
bothersome spurious whose high amplitude had been
reported,” could be reduced substantially by im-
proving the wave coupling antennsae.

The total transit time of the 1lst echo i{s the
sum of the times spent as an exchange spin wave
and as an elastic shear wave. This is given by

Zx

2z
T x+ngg (19)
\4 v
2

-4
x

where z z, are the positions of the turning poirnt

TD
and the cross-over points respectively, v is the
velocity of the elastic shear wave, and v _=3w/3k

i{s the group velocity. In the above expression
for evaluating T we neglect the transit times
through the BMW and the cross over regions.

We therefore assume w/Y-H(z)+Dexk6, and by

expanding H(z) in a Taylor series around z, ob-

tain the approximate expression for T

sz 2 -1
B c— nd
T v + ﬁ;TﬁT;E tan 8 (20

where g= [ZD _H" /vH' is a dimemnsionless para-
8= wyed,,

meter, H', H" are the first and second spatial deri-
vatives of the axial magnetic field evaluated at
the cross over point Z.» and Dex i3 the exchange

constant. or YIG2 when converted to CGS units,
Dex = 5x1077 Qe cm®, v = 3.84x10° cm/mc and
Y=21.8MRz/0e. In evaluating T in the above equa-

tion, we-assumed kT=° and k_=w/v.

Equation (20) for T, can be uged to com-
pute the delay time for a given field profile or
alternatively to synthesize the necessary profile
for achieving a desired delay characteristic. In
the latter case, T(w) 1s a given function of fre-
quency. When a field synthesis is attempted, a
word of caution is appropriate. For a specified
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T(w), the synthesized field profile may turm out to
be physically unrealizable or if physically possible,
might turn out to be a defocusing profile, render-
ing it impractical. For egample, the profile pro-
posed for a constant delay” is a highly defocus~
ing oue.

In the limits of D,,=B=0 we obtain from Eq. (20)
the position zx as

1
z.—
x quB

U YH
T(w)dw + G (21)

[+]

where € is an integration constant whose value may
be chosen at will.

The field profile as a function of position 2z
along the axis of the rod can be found by invert-
ing the above expression for L When higher ac-

curacy of the prescribed delay characteristics over
wide instantaneous bandwidth is required, a better
determination of the field profile may be warrarted.
An important delay characteristics is a linear
dispersion where the dealy time increases linearly
with frequency. In this case T-T°+Duj. By solving

Eq. (21), and when C®0 is chosen, the required adal
field profile is a linear one, given by

o, 4z 22

The linear dispersion coefficient D, is therefore
given by D=4/ YvH' whre H' {s the field gradient.
When C#0 is chgsen, the resulting profile is non-
linear.

DESIGN PARAMETERS

The most important operational parameters in
this class of devices together with our design gods
are listed below:

Insertion loss and flatness

For the device to be of practical use, it should
have no more than a moderate amount of insertion
loss and reasonable variation of such losses agouss
the frequency band. Obviously any matching arrarge-
ment to minimize the loss has to be broad band
since no external tuning at each frequency is al~
lowed.

Linear dispersion value and accuracy

Potential uses of and interest in devices poss-
ssing a wide range of dispersion factors exisc.
Based on our laboratory experience, we feel that
values from D=.1NS/MHz to 2 NS/MHz are currently
achievable, not necessarily over the same band-
width. For certain applications a useful criter-
fon is the time bandwidth product defined as D%iw
and a practically achievable number of >500. The
deviation from linearity is also dependent on the
bandwidth and values in the 1-3% range over band-
width of up to 1500 MHz are achievable. There i3
a wide room for tradeoffs among the three para-
meters dispersion value, allowable percentage de-~
viation from linearity and frequency bandwidth.
Frequency range and instantaneous bandwidth

Aside from bandwidth limitations which can be
traded off as discussed above, there 1is an upper
limit imposed by the appearance of the spurious 2nd
echo. As was earlier explained, the lst echo gen-
erates its own echo and the 2nd echo free bandwidth

1s therefore defined as the Ay over which the only
delayed output present is the lst echo. This band-
width increases upon increasing the frequency (an
octave being the theoretical maximum) and a 1GHz

or more at s band was set as a goal. Device opera-
tion in the frequency range of .5-5GHz has been
verified with 5GBz being a laboratory instrumenta-
tion limitation. We belive that useful operation
at C and possibly x bands {n feasible with instan-
taneous bandwidth exceeding 2GHz.

Input/Output isolation

Since the nondispersive electromagnetic leak-
age appears instantly at the output, a high ampli-
tude may be tolerable for certain applications.
For some important applicatioms, however, this {s
not so, Although it may seem that due to the
close proximity of the imput and output antennae,
high isolation could not be achieved, our design
goal was to limit the leakage to a level at which
its amplitude 1s no higher than the amplitude of
the lst echo signal.

Dynamic range

Our delay line i{s a magnetic device and like
all such devices, its behavior changes drastically
when high power rf signals are present. These
high power effects limit the dynamic range for use-
ful operation. Since high energy densities are the
culprits an obvious way to increase the dymamic
range is to increase the effective cross sectional
area of the signal. This may be accomplished by
optimizing the coupling to the BMW and/or by
decreasing the amount of focussing of the signal
while it traverses the exchange spin wave region.
As large a dynamic range as possible is obviously
desirable for many applications. For our ealier
work we achieved ranges of 25-30db, and any im-~
provement was deemed welcome.

DEVICE CONSTRUCTION AND MEASURED CHARACTERISTICS

t@n exploded view of a packaged device is
shown in Fig. 3.) Notice the position of the YIG
rod between the synthesized soft irom pole pieces.
The pole pleces were designed to implement the
radial macch only. Other surfaces were omitted
to allow access for the wave coupling structure.
The resultant internal field is therefore only an
approximation to the exact requirement. Its axial
position 1s adjustable, and it is held securely by
the tension supplied by the adjustment screw in
the front, and the locking cylinder, which presses
on the back pole pike, at the back. The input
and output antennae which are loops of 5 mil
enameled wire soldered to semirigld cables, are
pressed to the front face of the crystal by a sall
cylindrical teflon piece. The diameter of the
loops is 30 mils and they are placed side by side
off the center of the face of the YIG rod. The
parallel feed lines joining each loop to the semi-
rized cable intersect at approximately 90° on the
face of the red. The magnetic flux is supplied
by Alnico 8 permanent magnet rings. The dimensims
of the package are 2" dia. by 2 1/2" long and it
accomodates a 120 mils dia. by 200 mil long
(I80) YIG rod. Smaller size packaged devices have

been built and successfully tested. -

With the improved coupling structure described
above we observed simultanecus improvement in sev-
Specifically, overal

eral device characteristics.
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i{nsertion loes was rsduced by up to 10dd; loss rvip~-
ple was limited to 1-3 db; dynamic range measured
betwsen the noise floor and the onset of nonlinear
high power affects increased by at least 10db;
electromagnetic leakage fesedthrough could be re-
duced to a lsvel at which it was equal to or lower
than the level of the fragquency dispersive time-
delayed primary signal. Input/output isolation
increased as & result by up to 20db. The spurious
2nd echo signal could alsc be suppressed to levels
lover than the signals' by up to 20db.

In Figure 4 we see oscilloecope tracss which
highlight the characteristica of a representative
packaged device operating at S band. The device
contained synthesized pole pleces designed for a
fleld on exis of 300+300z (3 in mm). In all four
parts of the figure short input pulses, 40 NSec
wide, vere applied.

Part (a) shova the output obtained at discrate
input frequencies as marked. The lat and 2nd echoes
are seen to be delayed in proportion to the frequen~
ey, the latter at twice the rate of the formers,
The leakage f{eedthrough is not time~delayed and
ita position does not vary with frequency. We see
that the amplitudes of the spurious leskage and 2nd
echo signals are lower than that of the primary lst
wcho signals, the latter by as much as 20 db. By
sveeping the short input pulses across the frequency
band and applying the sweeping voltage vamp to the
vertical axis of the oscilloscopa, the frequency vs.
delay time dependance is odtained, This is shown in
part (b)., The diapersion s .3 NSec/MHz and the
frequency band 1000MHz, The linearity of the dis-
persion is quite good with a 2% deviation from a
straight lins obesrved. By removing the swesping
ramp from the vertical axis of the oscilloscope
while continuing to sweep the input signal, we ob-
tain part (c¢) which shows the amplitude of the out-
put signal as & function of its frequency. The in=-
sertion loss of the primary lst echo is 27-30 db
across the 1000 Miz frequency band and a negligible
amount of signal distortion is observed. The spur-
ious signals are at reduced amplitudes with input/
output isclation of 33-40 db, and 2ud echo levels
of 15-29 db bdelow the lavels of the primary lst
achoss.,

Part (d) showas operation at the fixed frequerry
of 2.8 GHz where the input power increases from
the upper trace downwards. The relative input
power levels are marked in the figurs. The lowest
trace clearly shows the nonlinear high power effct
ou the signal; the output pulse shows signs of a
breskdown and is no longer a delayed raplica of
the input. A complete breskdown occura upon a fur-
ther incrsase in the input power (not shown in the
figure). The threshold level st which nonlinear
response saets in is app. ~10b2a and the dynamic
range for linear operation is 44dd. This vas
messured in a setup vhich included a 47 db S band
amplifier with a 5 db noise figure. It cam be
sesn in part (d) that the 2nd echo saturates at
lower pover levels than the lat echo. This suggests
that the ensrgy density of the signal tends to in-
crease in proportion.to its delay time and hence
that saaller dynamic ranges are to be axpected in
delay lines exhibiting long delays. This tendency
may be offeet in lov focussing intarnal magnetic
5%:‘19353"1" wvhere the signal energy densitias

The magnetic fiald on the axis of the YIG rod,
calculated by fitting the data represanted in Fig.
4 to Eq. (20) loi the delay time T, is H;(z=Q) =
690+12402 = 4542° Oe (2 in mm)., This field is
Qquite different from the assumed field at the out-
sat of the synthesis. Two points should be borne
in mind in connection with this discrepency. The
first ona is that, as mentioned above, only the ra-
dial match of the synthesis was implemented. This
will distort tha field in the active region of the
delay line which extends to a depth of only l-2m
into the YIG rod, The fiald on the axis of a
naked YIG rod; when placed in & uniform DC bias
field, has a very small linear and a large quadra-
tie spatial coefficients. The required axial fidd
on the other hand, is drastically different, hav-
ing no quadratic and & large linear coafficients;
this difference has to be overcome by the synthe-
sized pole piscas.

The second point is, that a sat of pole
pieces designed for a specific field profile is
capable of sypporting a whole family of profiles
by adjuating the flux passing through them. This
is analogous to the case of a capacitor where the
slectric field may be variad by adjusting the
charge accumulated on its plates. The most advan-
tageous field profile for efficiant device opera-
tion as determined by rf considerations, may not
be the original profile from which the polse
pleces wers originally synthesized,
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The following sets of figures provide further information concerning the
characteristics of the Time Prism Filters that were developed by employing

the field synthesis techniques,
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Figure 1. Characteristics of packaged device after its removal from the
magnetizing field. (a) Frequency as a function of delay time with a
straight line superimposed for comparison.The dispersion is .35NSec/MHz.
(b) Signal amplitude as a function of frequency.Insertion loss39-45 db.
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Figure 2. Time Prism characteristics aftier coupling optimization.

(a) Device output at four distinct frequencies as marked.leakace amplitude
equal to or lower than first echo. (b) Frequency as a function of delay
time.Dispersion is .3NSec/MHz. (c) Signal amplitude as a function of
frequency.Insertion loss 32-35db,leakage amplitude lower than or equal to
first echo,second echo amplitude lower by at least 15db.
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Figure 3. Dynamic range.Relative input power is as marked. (a) Fixed
frequency 2.8 GHz.Lowest trace shows nonlinear high power effects,linear
dynamic range 44db. (b) Full band sweep of 1000MHZ in each trace,linear
dynamic range U4u4dd
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Figure 4. Characteristics of a filter in a laboratory setup. (a) Frequency
as a function of delay time. Dispersion is .38 Nsec/MHz. (b) Signal ampli-
tude as a function of frequency.Very flat insertion loss of 35+.5db
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Thin Film Input/Output Coupling Structures

The antennae are the major components in determining both isolation from
input to output and the coupling efficiency. Previously optimization of these
two specifications was difficult at best due to a number of problems inherent
in using hand formed loops, including: (1) inability to make reproducible
loops, (2) questionable reliability of wire loops due to embrittlement from
work hardening, (3) 1limited isoTation due to overlapping of input and output
Toops. The proposed design attempts to overcome these difficulties. The thin
film antennae will: (1) be reproducible, given a design mask, (2) not be
subject to embrittlement through work hardening, because the antennae will he
sputtered and etched on a rigid substrate of alumina, (3) improve isolation
with nonoverlapping loops and perhaps ground separators. In addition to
accomirodating for proposed antennae, the proposed delay line fixture should
allow for interchangingof the iron pole pieces, which shape the magnetic field
applied to the YIG rod. Ultimately this ability to interchange pole pieces and
antennae will open the way for a future series of experiments to maximize power
handling capabilities, minimize attenuation and maximize antennae isolation and
coupling.

The SM thesis of Leslie Itano, now nearing completion, has as its main goal
the design of a magnetoelastic delay line utilizing thin film input and output
antennae. Previous delay lines utilized resonant cavities or hand formed wire
loops to provide the electromagnetic input pulse and recieve the output pulse.
Although the delay line performance with the hand formed wire loops was excellent,
the results were extremely difficult to reproduce, requiring many hours of pain-
staking initial assembly work and many more hours of tuning at the test bench for
each antennae pair. Then, with all this loop adjustment, the wires sometimes
became work hardened and embrittled, resulting in highly tuned out unreliable

antennae. In contrast, the thin film antennae are made photolithographically
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using a mask with a specific design, This method produces consistent, easily
reproducible and reliable results. The fabrication time for thin film circuits
is also significantly less due to several factors. First of all, a pair of
antennae is produced on a single substrate so that several substrates can be
processed simultaneously. Secondly, once a substrate has been processed and the
antennae pair is etched onto the substrate, the circuit is fixed. The thin

film antennae are not malleable like the wire loop antennae, eliminating the
tuning step and further reducing fabrication time. Thus, the thin film antennae
is not only more reproducible and reliable, but it requires less fabrication time
than the hand formed loop antennae.

A secondary achievement of this thesis is the design of a flexible delay
line fixture. By "flexible", we mean that the fixture is designed to allow for
a range of antennae of substrate thickness, pole pieces which shape the internal
rod profile, and thin film antennae designs. This ability to interchange
components, and to interchange them quickly makes this design well suited to
research,

This new fixture design also retains the advantages of previous designs. The
new fixture is compact; it can be self-contained since allowance is made for the
use of ring magnets. The pole pieces have been synthesized to provide linear

dispersion.




Description of Fabrication Sequence (Summary)

This section, which will form a portion of Ttans's thesis),
describes the fabrication of the YIG delay line. First, an over-
view of the fabrication, and associated problems will be pre-
sented. The three major categories which will be included
are: (l) producing the thin film antennae, (2) manufacturing
the fixture, and (3) assemblying the delay line. Second,
a summary of the fabrication sequence will be provided as an

aid for subsequent work.

4.A. Producing Thin Film Antennae

The first step in producing a thin film antennae is mask
fabrication. This step involves designing the antennae,
reducing the pattern and transferring it to a glass photo-
graphic plate. This glass plate, complete with antennae
pattern, is the mask. In the meanwhile, an alumina substrate
has been sputtered by an outside recorder with thin film
chrome-gold. The thin layer (100—2002 ) of chromium acts as
an adhesion layer between the substrate and the thicker gold-
layer (200 micro inches). The mask is now used as a photo-
lithographic negative to selectively etch both chromium and
gold layers; the pattern remaining on the substrate is the
thin £ilm antennae.

Developing Etching Process

The complete "etching process" for thin film chromium

gold circuits has been well established. In this overview,
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we will f£irst review the general process, explaining the
necessity of each step. Next, we describe the special
"challenges" presented by the antennae designed for this thesis,
and the attempts to overcome these challenges. Lastly, we
summarize the final approach used in this thesis.

The "etching process" begins by spinning on a thin
layer of photosensitive, etch resistant ligquid to the sub-
strate. The spin rate and viscosity of this "photoresist"
liguid determine the thickness of this layer. The substrate
is then "prebaked" to harden the photoresist, making it more
resistant to breakdown, i.e., local voids or weak points
in the photoresist caused by handling in the exposure step
to follow. "Breakdown" in the photoresist will allow the
etchant to seep in, etching the gold and/or chromium.

The glass mask already prepared is a negative; that is,
the design area is blackened, blocking out light, while
the remaining area is totally transparent. This mask is
aligned to the substrate edges, contact is made with the
substrate, and the photoresist i3 exposed to ultra violet
light in those areas where the mask is transparent. The
photoresist is chemically developed, toughening all of the
unexpected areas. The exposed areas are washed away, leaving
behind the design's protective photoresist pattern. The
substrate is "postbaked" to toughen the remaining photoresist.

Since the design area is completely protected by photo-

resist, the remaining unprotected area can be etched away .




-7~

Figure 4.la - Thin film antcnnae designed, set in delay line
housing

Figure 4.1b - Inlarqgement of coupling roegion
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The top gold layer is etched first with a potassium iodide
solution, while the lower chromium layer is etched with a
KMnO4 and sodium hydroxide solution. Finally, the protective
photoresist layer is stripped away with an industrial strip-
per, leaving behind the intact desién pattern.

The antennae designed for this thesis (see Figure 4.1)
requires several sputtered through via holes to ground in
close proximity to narrow (3-4 mils wide) lines. The chal-
lenge was to protect the via holes without bridging over
to the narrow lines. Using the established processes and
taking no special precautions to protect the via holes, gold
etch seeped into the holes, partially etching the insides
of the holes. Aalso large voids were present in those regions
where the photoresist layer was particularly thin, such as the
edge of the via holes. The first attempt to solve this problem
was a fourfold increases inthe photoresist thickness (to 4
micron). As hoped, this change resulted in improvement co-
verage for the via holes; however, voids still appeared
at the edges. In addition, the etch factor has increased
significantly, causing a dramatic change in line width or
effective line impedence. The etch factor, as shown in Figure
4.2, is the difference between the top surface or apparent
edge of the photoresist and the edge of the etched line. 1In
general, the etch factor can be due to breakdown or softening
of the photoresist edge which allows the etchant to seep
underneath. 1In the case of the thicker photoresist, the

increase in etch factor is likely due to diffraction of the
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edge of etch line

/edge of the photoresist

Figure 4.2 - Etch factor

etch factor
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exposure light. Figure 4.3 illustrates how this diffraction
causes extra exposure of the thicker photoresist near the con-
ductor surface, exactly where its protection is needed.

Figure 4.4 shows how a vertical visual inspection completed
pefore etching would not detect the diffraction caused dif-
ference between conductor surface or effective photoresist
edge and top surface or apparent photoresist edge. So this
modification brought some improvement, but proved to be more
problematic than helpful.

Returning to theoriginal 1 micron thick photoresist layer
the etch factor was further improved by increasing the post-
bake temperature from 90°C to 150°C. This seemed to further
harden the photoresist edges, resulting in less etchant seep-
ing underneath and etching the metallic layer.

The remaining problem of protecting the sputtered through
holes was solved by manually applying a thick, acetone based
resist to the holes with a few strands from a camel hair
brush. Since the holes were only 3 mils in diameter with ad-
jacent conductor lines only 2-3 mils away, this task requried

steady hands, but resulted in totally protected sputtered

through holes.

4.B. Manufacturing the Fixture

Manufacturing the delay line fixture involves designing

the components of thne housing and then machining them. Since

rusting of the pole pieces had altered the field profile of
previous efforts, these parts were flashed with Ni for oro-

tection.
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4.C. Assemblving the Delay Line

The final delay line assembly starts by putting together
the connectors and main housing (see Figure 4.1). The
next step is to fix all of the flexible parameters, including
raising the front pole piece to compensate for the substrate
thickness, installing the specially designed pole pieces, and
epoxying thethin film antennae to the ifront pole piece.
The electrical connections between the substrate and coaxial
connectors are made with a 1 mil x 25 mil x 100 mil gold
ribkon which has been gap welded to the substrate, then
epoxied to the connector. Gap welding is a general technique
for thermal compression bonding gold ribbon to gold metalli-
zation {including thin film gold metallization). After fin-
ally installing the remaining components, including YIG rod,
front pole piece and retainers, the delay line is complete
and ready to test.

The following detailed summary is provided as aid for
subsequent work:

Description of Antennae Fabrication

A. Mask Fabrication

1. Design antennae

2. Transfer design (at 20x) to rubylith

3. Photoreduce patterns

4. Transfer (xl) patterns to glass photographic
plates

B. Sputtered Substrate Procurement
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Order alumnina to size--15 mil thickness ordered
to minimize gap between rod and vole piece.

Width and length determined by fixture.

Order holes drilled for sputtered through holes
Sputter substrates with chrome (for adhesion) and

200 y inches of Au.

C. Substrate Etching Summary

1.

Spin AZ 135C¢J photoresist on to metallized
substrates.

Bake substrates at 90° for 25 min. to dry photo-~
resist.

Align glass photbgraphic mask to both substrate
edges and sputtered through hcle sites.

Expose photoresist with ultraviolet light,
using glass photographic mask as a negative.
Apply protection paint to sputtered through
holes.

Develop photoresist with Shipley AZ Developer,
removing exposed portions of photoresist.
Postbake substrates at 150°C for 25 min. to
toughen photoresist.

Make batches of both chromium and gold etch

solutions as follows:




Gold Etch Solution

J.324 grams I (solid)

+ 1.134 grams KI

50 milliliters water

Chromium Etch Solution

10.

3.25 grams KMnO4

3.25 grams NaOH

50 milliliters water

Etch away exposed gold and chrome metallizations.
Strip remaining photoresist with Allied Chemical

A~20, a phenol based industrial stripper.

Housing Construction

1.
2.

3.

Design housing
Machine housing

Apply Ni flash

Final Delay Line Assembly

1.

w

Assemble coaxial connectors

Gapweld Au ribbon to antennae input and output
Screw front pole piece into main housing, ad-
justing height so that substrate surface is

5-10 mils below connector height.

Attacn substrate, antennae side up, to front pole
piece with Ag point. Antennae input and output
must line up with connectors.

Attach AU ribbon to connectors with Ag epcxy




6.
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Assemble balance of delay line,

pole piece, YIG rod,

retainer.

teflon rod retainer,

including back-

fixture
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Appendix A - Pole Piece Design

I. Overview

This appendix outlines the synthesis procedure de-
veloped by Morgenthaler and Platzker [19]. Although more
general cases can be treated using similar methods, this
discussion will be restricted to the synthesis of cylin-
drically symmetric fields where the material shape is a
cvlinder or disk. The logic behind the pole piece design
is as follows. The magnetic potential inside the cylin-
drical material is determined by an appropriate series
expansion once the axial magnetic field, Hz(O,z), is spec-
ified. The space outside the cylinder is then divided
into separate regions. Within each outer region, an ap-
propriate selection of functions is made with which to
expand the Laplacian magnetic potential ia that region.
The coefficients for each outer region expansion are then
determined by matching boundary concitions with the inner
potential so that the error is minimized in a least sguares
sense.

Once the outer potential has been determined, the
edges of pole pieces which surround the cylinder can be
designed to coincide with lines of equipotential. With
the application of an appropriate dc magnetic field, the
pole pieces become energized so as to produce the correct
outer field and consequently the correct axial magnetic
field in the cylinder. It is imnortant to realize that
although an infinite number of combinations of material
size, share, and vole niece design exist, all of which
would create the desired field, once one has been chosen

the field it creates is unigue {18].
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IT. Inner Field Determination

The equations governing the dc H field in a ferro-

magnet that is everywhare locally saturated are

M x (ﬁ + ﬁa) =0 (A.l.a)
M+« H>O0 (A.1.b)
[M]=n (A.2)
VxH=0 (A.3)
Ve (H+M =0 (A.4)

where H® is an effective magnetic anisotropy field which may
be ignored initially. 1In terms of the inner scalar magnetic

potential ¢, the relations

H= - vy (A.5)
- Vi
= - Y. A.6
and M 7] M ( )

satisfy equations (A.l1), (A.2), and (A.3). These equaticns
may be substituted into equation (A.4) to arrive at

M

v - [(1 +lvw

YVyl = 0 (A.7)

In the limit as 'Vw' + ®, the non-linear portion of
equation (A.7) goes to zero and the equation becomes Laplace's
equation. Thus if the magnitude of H grows as distance

from the cylindrical axis increases, then at the radial
boundary the inner field potential should be approximately
Laplacian. This aids the matching of boundary conditions

with the outer field, which is Laplacian.
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The axis of the cylindrically svmmetric ferromagnet

is assumed nonsingular, so an appropriate expansion of . is
o
v =t a, (2) " (A.8)
n=0
- *® 2
so that H(r,z) =1, I ay (z) r n
L 17% 2(n+l) a (z) =21 (a.9)
r o 2(n+l) o

A . . .
where 1 is the unit vector in the nth direction and the

primes denote differentiation with respect to z. Expanding

M separately as oo

Mir,z) =M, I b, (2) 20
zAn"O o0

+1. I b2n+1(2)
n=0

20+l (A.10)

allows the use of equations (A.1l), (A.2), and (A.4) to
determine constraints on the a; and bi coefficients.

Use of equation (A.l.a) results in

>~ -]

M( I ar T 2n+1
e i?“(Z) r? )( n=0 P2n+1(2) T ) -
- M( 5 b, (2) £ (5 2(nel) a5 (ne1) (2) )
n=0 n=9

where M may be factored out as assumed non-zero. Multiply-

ing out and collecting terms yields a polynomial in r,

Hesg

0 {[nio (@2n b2(s—n)+1

- 2(s+1l-n) a

s
s+l
2(s+1-n) bzn)] r } =0 (A.11)

Since this equation must be satisfied for all r, we must
have that

- 2(s+l-n) a Y= 0 (A.12)

(@3n Po(s-n)+1 2(s+1-n) P2n

N~

n=0

for s 0,1, 2, 3, ... . This gives the first constraint

on the coefficients. However, equation (A.l.b) also re-




. . . .
stricts the sicn of a0 b0 to be ao bo > 0.

Use of equation (A.2) results in

2n+1, 2

2n -
b2n+l(z) r Y5 =1

™~ 8

2
( bZn(z) ) S T S

n=0 n

ne 8

0
Multiplying out and collecting terms yields a polynomial

in r,

s
[ Z (b + b

*2
+
™8

2n ®2(s+1-n)’
=1 (A.13)

2n+l b2(s-n)+l

0 ] 2 (s+1)

s n=0

* by Py(sel)
Setting r = 0 reveals that bg = 1. Furthermore, from re-
peatedly differentiating the equation with respect to r

and then evaluating at r = 0 we find that

s
nEO ®on+1 P2(s-ny+1 * Pan P2(s+1-n)’

* by bygey =0 (A.14)
for s = 0, 1, 2, 3, ... . This gives the second constraint
on the coefficients.

Use of eguation (A.4) results in
> 2
. 2 2 ! n
v [1z n=0m(a2” + M b2n) r
+4. 5 ™Mb + 2(n+l) a y 20t
r 2n+1 2(n+l)
n=0
e 2
or SEO [4 (s+1) a(s+1) * 2(s+1) M byci
- " [ zs —
+aj, + M b2$] r = 0 (A.15)

This can hold true for all r if and only if

4(s+1)2 + 2(s+1) M b

32 (s+1) 2s+1

+ aj,. + M bZS =0 {A.16)
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for s =0, 1, 2, 3, ... . This gives the final constraint
on the coefficients.

In addition to equations (A.12), (A.l4), and (a.16) we
have the constraints that bg = 1 and b0 aé > 0. Since aé
must be either positive or negative definite over the inter-
val to insure saturation, without loss of generality we may
take a;, > 0 and b, = +1. The solution of equations (A.12),

0 0
(a.14), and (A.16) is then:

- __1 0
s =0 bl - 2 36 T M (A.17.a)
a, = 3 by a (A.18.a)
2 =771 3 .18.
_ 1.2
b, = - 5 bj (A.19.a)
s > 1,
- - l " ’
Prs+r = = sparry (a3s *+ M b)) (A.17.b)
S
v L BTy (s k1) PakT30kP2 (k) 4111/ (30D
ay(s+1) = {25 Posiy (A.18.b)
-]
- k51[2(s-k+l)a2(s_k+l)b2k-a2kb2(s_k)+1]}/2(S+l)
. 1.2
Pa(s+1) =7 LI Pk Bosyyr * 3 Puy (A.19.b)

Of course, when actually calculating the inner potential on
the computer the a; and bi coefficients are not found expli-
citly, but approximated numerically.
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III. Outer Field Determination

Now we must find an aporopriate expansicn for the
Laplacian magnetic potential outside the cylinder. Laplace's
equation in spherical coordinates (0,6,9) is

2 2, 2 oy NN
3v ., 228, 1 00,28, 8 .y (a.20)
apz p2 aez 02 sin“e a¢2 p p pz
which has as a solution
b= (c, o" +c, o~ M)y (cos me) PP (cos 6) (A.21)

If we assume no $ variation (i.e. m = 0) and transform
this solution to cylindrical coordinates (where of course

it is still a valid solution) then we have that

2 Z)n/2 2 z2 ~-{n+l)/2

p o= [Cl (r™ + 2 + C, (r® + )

]Pg(cos )

Ignoring the second solution, we finally arrive at

v = C1 (r2 + zz)n/2 Pg(cos 9) (A.22)

where tan 8 = 2 anad Pﬁ(cos 9) is the associated Legendre

function of degree n and order zero. If we then define
*
proz (x4 252 pO(cos o) (a.23)

we can expand the outer potential 3 in terms of these poly-
nomials as
V=1 c Pr,2) (A.24)
-y = r,z .
n=g D N

*
For reference, the first five Pn functions are listed
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- . *
below. Notice that since the Pn functions are non-sinocular

for all z (i.e. have their sources at infinitv), thev

e

must
be used for regions outside the cylinder which contain the
z-axis.

*—
Po = 1
*
Pl =z
* 2 1 2
P2 =z - 5 r
* 3 3 2
P3 = 2 - E Zr
* 4 2 2 3 4
P4 =z -3z r  + gr

In addition, since in general the desired on axis field
to be synthesized is a polynomial expression, and since
the inner potential was expanded in a polynomial in r and
z, it mekes sense to expand the outer potential in the above ﬁ

polynomial expressions rather than the usual Bessel functions.

In regions outside the cylinder which do
the z-axis (or where the z-axis is singular),
a singularity at r =
(A.24).

equation in spherical coordinates which would

0 may (or must) be added

Instead of using the second solution

not include
solutions with
to equation
to Laplace's

yield a func-

tion singular only at a point, equation (A.22) is used along

with Laplace's equation (ignoring ¢ variation) in cylindri-
P q g

cal coordinates,

2 2
g_% + £ 22 + éu% =0 (A.25)
9r T ar 3z

to obtain a second set of solutions singular on a line of

the form

* * *
Qn(r,z) = Pn(r.z) «lnxy + N (r,z)

(A.26)
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* - n l n * . *
where Nn =z + J = [2(z2 -Pn) -~ n(n-1) - f r dn ar} dr

-2

*
Qn(r,z) is more usefully given by the recurrence fcrnula

* _ 2n-1 * n-1, 2 2 _* 2,.* *
Q = —pH % 9, (274 5 - (P -2P ) (A.27)
*
with QO = (In r + 1). Therefore, in general the outer
potential y may be expanded as
N . N-1 .
-y=C,+ £ C_P (r,z) + L C!'Q (r,2z) (A.28)
0 n=1 b n n=0 B R

where C0 represents a reference potential and may be set
to zero.

For reference, the first five Q; functions arf listed
below. Notice that the Qn functions, unlike the Pn func-

tions, have their sources at both zero and infinity.

Ql =1lnr + 1
ez
Q2 =2 1lnr + 2
* 2 1 .2 2
) Q3—z inr §-r Inr + 2
*
Q4 = 23 lnr -~ % z r2 Inr + 23
* 4 N 2 2 3 4 4 3 4
Qs—z lnr~gzr1nr+§r 1nr+z--ﬁr

* *
Although the Qn functions can be approximated by the Pn
functions in many cases, this would reguire many terms in

*
the expansion and Pn functions with large powers of z.

Since in general it is better to expand in lower order
polynomials, if possible O; functions should be included

in the expansion of the outer potential. Expansions using
the first five P; functions and the first five Q; functions
yielded results consistent to better than an Oersted for the

cases examined in this thesis.

‘__._.__——-A




IV. Boundary Conditions

This discussion is restricted to the case of a cylinder
or disk, so it is beneficial to subdivide the outer region
at the corners and carry out three sevarate expansions for
3. Those outer regions with z < 0 and z > L cannot con-
tiin Q* functions. The matching of ¢y = G and (l+-$%)§%~=
%% is carried out in a least squares sense. That is, if we
assume the outer potential in a given region has been spec-

ified as

!
<)
1
[[I o A

Cc. f.(r,z) {({A.28})
: J 3
j=1

then we are trying to mirimize the least square error de-

e- 4 -

Boundary
Surface

fined as

N~z

c; fj(r,z)]2 as (A.29.a)

j=1

An equivalent expression is

M3y
vw’an

[ o I8~A

E = <Ai(¢ -

N

c. £ + alras
j=1 )l 3
N
- I c, =11 (A.29.b)

where < > denotes averages over the boundary radius, and

Al and AZ weight, respectively, the relative importance of

the tangential and normal components of the field subject

to Ai + Ag = 1. Requiring %g— = 0 yields the set of equations
i
N of. Jf.
2 2 i p)
55y by £5 82+ 9w a0 ) 5
I JPRRURT Sl SR B 'S (A.30)
= <A v 2 In Vo) n '

for i =1, 2, 3, ..., H. The solution of equation (A.30)
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for the C, coefficients yields an outer field that satisfies
the boundary conditions.

The right circular cylindrical shape of the samples
consicdered can be exploited to simplify the solution of
equation (A.39). The radial match at r = R, and the end

match at z = L are considered separately.

IV.A. Radial Match
In order to obtain a good match with the outer field
at the radius of the cvlinder, the inner field is first ap-

proximated as

_ N-1 o n
Hz(z,R ) = nio o (f) (A. 31)
- _ N-1 z.n
and [Hr(z,R ) + Mr(z,R )l = nED Bn \E) (A.32)

where N is an integer yielding tolerable error. This
approximation is necessary since the inner field at the
radius no longer has a polynomial form, while the outer
field at the radius does have a polynomial form.

The ap and Bn coefficients are found from a least
squares fit using an inverse Hilbert matrix of order N.
This arises from solving for the least squares coefficients

such that the inner potential expansion,

f(x) =
k

[ e B4

) Ak gk(x) (A.33)

is approximated as a polynomial

X (A.34)

The matrix least squares equation is of the form
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r.-:gz> <g g,> <g ga.> N P<AO>—
1l 1 72 173 - 1
2
<95, 9, <93° <9, 93> ... | (<A

- . .
- A . . -
. » .

<9y 91> <9y 9p> <9y 93> .- <Ag>

—r —-—d

1fL
where <g; 9:> = i:yo gi(x) gj(x) ax

o))
e}
Q
A
Q
[,
v
i
e
[ ]

L
0 gi(x) fx) dx

e fﬂ

<ng>

<g..ft>
I

(A.35)

If the length of the cylinder is normalized to unity then

1

(1 i+j-2 _
<9 gj> SO X ax = i+3-1

Substituting into equation (A.35) vields

— —-r - — -
A I B - ffp:) dx
% % % é oo Ag {x £(x) ax
3 TR IR | S T
. o A: IXN ;(x) dx
| U B a

(A.36)

where the matrix multiplying the Aﬁ coefficients is the

Hilbert matrix of order N,
The solution to equation (A.36) is then

A‘lﬂ fe) ax |
Ag S:: f(x) dx
-1
= H
. N :
Ag SxN f(x) dx
. —l —— -

(A.37)
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where H;l is the inverse Hilbert matrix of order Y. licwever,
the accuracy obtained with a computer solution to ecuation
(A.37) can be deceotive., The Hilbert matrix is an ill-condi-
tioned matrix, whose inverse rapidly overflows the capacity
of a digital computer. Fortunately, from an enginecrinc stand-
point this inaccuracy is largely unimportant, chancing the
pole piece design only at distances far from the crvstal sam-~
ple. Since solutions to Maxwell's equations tvpically decay
exponentially, varying the pole piece design far frcm the
sample has little effect on the axial magnetic field. There-~
fore, the ill—cokditioned property of the Hilbert matrix ac-
tually allows greater flexibility in the pole piece design
and implementation.

In terms of ay and Bn' the Cn and CA coefficients of
equation (A.28) are found to satisfy

An-1

c = —=E< - (1nR + 1)C!
P (p P P
N-p ax
- kil RT Ak » oy (1nzz+¢k)cp+k] (A.37.a)
R B N-p
C' = ’-‘_E - Z RZk A .
P LP k=1 ptk,k
] L
(2k[cp+k + (1n12+¢k)cp+k] + Cp+k} (A.37.b)
k n!
where A = (~1)
n/k (k) (5 11? 2F
and 1 k=0
¢k =

1.1 1
l - (1+§+§+...ﬁ) k>0

These equations are not general, but hold only for the special
case of a right circular cylinder under discussion Since

by design Cﬁ = 0, equation (A.37.a) immediately gives CN'




-49-

Alternating between equations (A.37.b) and (A.37.a) produces

an unraveling that calculates in order CN; CQ 17 Cl 50 T
. NT P e

ces} Cé. The value of C0 is immaterial and may be set tg
Zero.

IVv.B. End Match

The outer potentials for z < 0 and z > L can be found
in a similar fashion. For the z = 0 end face, matching ¢
+ .
and Hz Mz yields

a_f(0)
n n even
An,n
Cn = (A. 38)
an_l(O) + M bn—l(o)
n odd
An,n—l

where a  and b satisfy equations (A.17), (A.18), and (A.19).
Similar expressions result for the z = L end face.

V. Design Example

To illustrate the use of the synthesis technique, it is
helpful to work through a low order example by hand. We shall
attempt the synthesis of a linear axial magnetic field of the
form

Hz(o,z) = A + Bez (A.39)

in a YIG cylinder of length L and radius R. For simplicity
anisotropy will be ignored. Choosing

B.z2 (A.40)

[ S1] o

satisfies the requirement that




-7 (- 2n

e 8

)| = A + Bz (A.41)

aZn(Z) r r=0

n=0
Using equations (A.l17), (A.18), and (A.l19) we have that

A

1
Py = - 3Bz T ATH (A.42.a)
__ 1A + B-32)
82 T T T Bz v A+ (A.42.b)
2
= -1 A
b, = -3 = (A.42.c)

({(B*z + A + M)

This allows the inner magnetic potential to be approximated

as

_ 1.2, 1 A(A+Bz) \_2
p = (Az+sz)+4(Bz +A+M)r {(A.43)

The inner magnetic field is then given by

i _ _ £ AB 2 A
H'(r,z) = [A+ Bz sM EzFsa v )1,
+[-l‘“”+‘l‘2 r] % (A.44)
2Bz +A+ M r ’
The magnetization is given by
— 2
M(r,z) =M [ 1 - 1 A 5 r2 1 1
(Bz + A +M) z
+M[-L AA*DB2) A (A.45)

4 Bz + A + M r

Using equations (A.31) and (A.32) we then have that

Hy(R,2) = ag + oy (B) + oy (B2 (A.46.a)
~ Z z,2
[ H.(R,2) + M _(R,2) ] = B, + By () + By () (A.46.b)




For simplicity of calculation, we now assume that we are
only concerned with matching tangential H, and we ignore the
matching of normal B. This corresponds to setting xl = 1 and
Az = 0 in equation (A.30). Expanding the outer potential as

2
~‘b=£

* * *
. Cn Pn(r,z) + Co Qo(r,z) + Cl Ql(r,z) (A.47)

0

allows the least squares coefficients to be found. In terms
of the a, coefficients we find that:

C0 = ay - o, (%)2( % + 1lnR)
Cl’%% .
C2=’§“E%

Cb’%(%'%) r?

O
'—‘-
it
R
[\
/_\
(i)
N
N

More complete solutions can be obtained using the com-
puter methods described in section IV. For computer solutions
an expansion of the form of equation (A.28) is assumed. For
the case of A = B = 300 in equation (A.39) we have as the

coefficients:
End Match:
Coefficient Value
C1 ~ 2160.0000
C2 - 21.634¢6
C3 - 9.2571
C4 -~ 0.2525
C5 0.1111




~50 -
Radial Match: o
Coefficient Value
Cl - 358.0249
C2 - 153.2998
C3 0.3632
C4 - 0.0173
1 -
Cl . 1.9934
)
C2 0.3182
L
| C3 0.1384
A ] -
) C4 0.0284

A plot of the equipotential contours implementing both the
radial and end magnetic potential matches is shown in figure
(A.1). Here, the magnetic potential end ratch at z = L lies
above that of the radial match at z == L, so the area enclosed
by the two equipotentials would have to be negative. This is
not physically realizable, and the end match at z = L is not
implemented. Since the magnetoelastic interactions occur near

z = 0, this does not normally present any real problems.
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Synthesized Magnetostatic Modes and Waves Using Nonuniform Magnetic Bias Fields

Our progress on employing nonuniform dc field synthesis to magnetostatic
modes and/or waves is described in the attached set of preprints and reprints

of papers that were presented at the following conferences:

-1980 Intermag Conference, Boston, Massachusetts, April 21 - 24, 1980

-1980 International Conference on Ferrites, Kyoto, Japan, September 29 -
October 2, 1880,

-1980 Ultrasonics Symposium, Boston, Massachusetts, November 5 - 7, 1980

-1980 Conference on Magnetism and Magnetic Materials, Dallas, Texas,
November 1T ~ 14, 1980

For completeness, reprints are also included of our earlier work described at the
1977 Conference on Magnetism and Magnetic Materials and the 1978 Intermag,

Florence, Italy.




NOVEL SEVICES BAS
CONTROL 0F MAL )
fo R. Morgenthnaior
M.I.T.
Cambridnge, Massacnusetts

D UPGH FIFLT CRADIENT
TIC 90075 AND UAVES

Abstract

Ye discuss the manner in which gradients in eithor the hias field maanitud .,
direction or both can be employed tc synthesize magnetcstatic wave dispersion
characteristics or modz spectra. This is done to control pre-specified character-
istics such as frequency, rf enerqy distribution, impedance, velocity of eneray
circulation and the threshold governing the onset of nonlinear effects due to
parametrically-unstable spin waves.

Previous theoretical models are reviewed, extended, and utilized to predict
the behavior of a new class of microwave vesonators. In addition, we predict
that freguency selective filter-iimiters can be consiructed with gradient-
controlled limiting Jevels,

We also review experimental evidence of high-G gradient-localized risonances
in platelets and thin films of single crystal YIG. Included are recent chserva-
tions of wagrneiostatic ~urface woves nvrepiaating in 2 thin {iim biaced with 2

nonuniform in-plane field caused by movable permalloy strips.
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F. R. MORGEWTHALER

Department of Electrical Engineering and Cemputer Science
and the Research Laborctory of Electreonics
Massachusetts Institute of Technology
Cambridge, Massacnuselts, USA

Qur interest in controlling magnetostatic waves and modes by means of dc
field gradients dates from the experimental observation of localized high-Q
resonance in single crystal yttrium iron qarnet (YIG) reported by Zeskind and
Morgenthaler.]

Qur interpretation of these resonances is that localized magnetic mcde
‘patterns are formed in which the resonant energies are guided or confined by
regions of high dc field gradient within the crystal. By appropriately
designing internal magnetic field profiles, one can create apparent "surfaces"
or "tracks" of magnetic field discontinuity. Magnetic waves bound or guided
by such gradients can be made to follow appropriate propagation paths with
controlled group velcoity. If the mode amplitudes are very small at the edges
and corners of the sample, the surface scattering {which one would expect to
be enormous) is largely prevented. Consequently, the Q of the resonance
governed primarily by the intrinsic linewidth of the bulk crystal together
with normal circuit Toading considerations.

In the first experiments such gradients arose naturally from the nonuniform
shape demagnetizing fields; in subsequent work by Cooley2 and Horowitz3, we
have created pre-specified gradients with shaped pole pieces designed by field
synthesis techniques. A similar approach has recently been follaowed by Tsutsumi
at a].4

We first review these carly experiments and the theoretical treatment of
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quasi-two-dimensional macnetostatic modes of single domain thin ferrite cir-
cular disks or annular rings, when the dc wagnetic rield is normal to the
plane and varies radially.

We find solid theoretical justification for the ‘track" concept and
enumerate mode patterns for both gradient-modified boundary modes and qradient-
dominated wavess. The important effects from rf fringing fields at the edge of
the disk are also censidered,

In the absence of a radial gradient, all of the modes of a solid disk
have circularly-polarized rf h-fields with zero volume-divergence. These modes
are stongly influenced by the magnetic pole distribution on the edge of ths
disk and the rf enerqgy becomes progressively concentrated near the rim as the
mode index increases.

When the field gradient is modest, the modes retain these general char-
acteristics but develop non-zero values of v-h throughout the volume which
change both the state of polarization of the field and the distribution of rf
enerqgy; the latter can then predominate either in the central portion or near
the ¢dge of the disk. In addition, both the mode frequency and the velocity
with which the mode energy circulates are found to be altered.

for increased gradient strength, the volume divergence of certain modes
can change so dramatically that selective localization or expulsion of the
energy occurs. The sense of polarization can also actually reverse. I cer-
tain cases, the volume divergence of the rf magnetization can become infinite
(in the lossless exchangeless approximation) at a certain interior radius, LS
The magnetic poie distribution at this "virtual-surface" thus resemble that of
a true surface and can serve to guide and localize the mode.

These previously discussed "virtual-surface"” modes, are reanalyzed in
terms of the polarization factor of the rf magnetization., Analytic solutions

of that factor are continugus through the "virtual-surface” and are given for
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the two-dimensional modes associataed with a special class of field profiles.

We next discuss the synthesis of modes with pre-specified characteristics,
such as velocity of energy circulation and rf energy distribution, In addi-
tion, boundary conditions that have been imposed to make the mathematical analy-
sis more tractable (namely placing the thin film or disk between perfectly
conducting plates) are removed; the bias field is still normal to the plane but
radial gradients although now generalized to arbitrary form must be only weak to
moderate,

For mathematical convenience, we choose to model the thin film disk as a
very oblate spheroid with semi-axes a and b. The thickness of the "disk" at
its center is 25 and the radius is a where b<<a.

The modes analyzed are guasi-two-dimensional in that the rf magnetizaticn
is assumed to be without appreciable thickness variation; the fringing magnetic
fields ere, of course, three-dimensional hecause the spheriod is surrounded by
free space.

The results can be utilized to predict the behavior of a new class of micro-
wave resonator, In addition, we predict that frequency selective filter-limiters
can be constructed with gradient-controllea Timiting levels,

Finaliy, we consider the guiding of magnetostatic surface waves (MSSH) on

films with an in-plane bias field that may be a function of those coordinates
transverse tc the propagation direction. In particular, the recent experimental
observatiun6 of MSSWs in a rectangular YIC film place between strips of permalilcy
and in the plane of the strips is reviewed.

Localized 'igh-O Resonarce in Moruniform OC Fields

While measurirng the microwave coupling between two arntennas closely spaced
on the surface o7 a bulk single crystal YIG slab (with dc magnetic field applied
perpendicular {o the slab), Surprisingly, despite the very nonuniform demaqgnetiz-

ing field caused by the norellipsoidal sample geometry, Zeskind7 observed spatiaily
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Tocalized hiah-0 resonant modes.  The convenient planar aeometry along with
the hich-N and naonetic tunability ol these nodes cugqested the vossibility ot
a totally intearated monolithic YIG filter,

The basic experimental configuration appears in Fiqure 1. Gold thin film
antennas were photographically etched on the surface of the hottom alurmina
substrate, The 30 um wide and 4.2 mn lonag antennas are separated by an 80 pm
wide cround strip to improve electro-magnetic isolation. The bulk sinale
crystal YIG slab cut along the (110) plane (shown in place on top of the
antennas) is glued into a slot milled in the surface of the top alumina substrate.
The top substrate and YIG, together, move with respect to the bottom substrate
(antennas) thus allowing plots of spatially dependent microwave properties of
the YIG. Both sides of the slab are polished to a surface finish of about one
half wicrometer. The dc maagnetic field is appliied verpendicular to the plane
of the slab.

Figure 2 is a plot of microwave counling between the two antennas as a
function of frequency with antennas located alonqg the center line of the slab
ard Hdc = 2300 Oe. The sharp resonance at 2,46 GHz is characterized by o half-
power bandwidth of 1.8 MHz corresponding to a loaded-0 of approximately 1400,
Insertion ioss at resonance was initially on the order of 10dB but was
subsequently reduced to under 2D0b., The resonance is magnetically tunable over
the range 2.2 to 3.0 GHz. No apparent power limiting was observed with input
signals of up to +10 dBm.

In Figure 3 we plot microwave coupling as a function of antennas displace-
ment along the surface of the YIG slab for fixed frequency (2.46 GHz) and fixed
field (2300 Oe). A displacement of 0.0 mm corresponds to antennas located along
the center Yine of the slab., T+ is evidently that spatially lccalized noints

of resonance exhibits svmmetry about the middle of the crystal with maximum
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response gcecurring at the midplane, Half-power spatial linewidths are
approximately 60 .

Formulation ¢f the Basic Two-Dimensional Equations

We consider a ferrimagnetic film disk magretized to saturation in the z-
direction by a dc field H; radial components are assumed negligible through-
out the disk. Since we are interested in magnetic modes of frequency w that
have negligible electric field energy, the magnetostatic approximation is
suitable and the rf magnetic field may be expressed as h = -V, Because the
ferrite is assumed to be saturated by a cylindrically, symmetric field Hz(r)
and modes without z-variation are sought, we take the complex magnetostatic

potential (with suppressed exp [jwt] variation) to be of the form

v = exp (|m] f'y—(—})f—jr ~ Jme) (1)

where @ is a positive or negative integer and y{r) determines the radial varia-

tion of the mode. The latter also describes the polarization of the rf h-field
- dml 2
he/hy = 3 ABE v () (2)

The other field quantities follow from the Polder suscaptibility tensor

and the Maxwell Equation governing the curl of the electric e-field.

hey are
= oAl .m
M. = (xy -x m')w (3a)
B LU O L. ,
mq) = ] . (X K {mT y)\} (3b)
and
e, = ~wn mly®(rjur (4)
where
y° = (]+x) v - mv
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Here y = 2/(22-92), K = -Q/(Zz—QZ) with 2(r) = Hz(r)/M and 0 = w/wy. The latter
are, respectively, field and freguency normalized to the saluration maguefizadion
K wy = -yqu where v (negative) is the gyromagnetic ratio. It is also caonvenient
to take 0>0 and define o = Qm/|m].

The polarization factors of the rf maanetization and rf flux were icnored
in our previous work but have been found to be very useful quantities. Consequently

we define

m/my = 3 mr P(r)and by =5 o pt(r) (5a), (5b)

where from Eqs. (3a, 3b) and (4)

Iyt Iy'+o o o (Z1)p-o /
P = Tioy T#T¥oyo and  p Z+1-op (6a), {6b)
The wave impendances are defined by
eZ m ¢
n, = ~—(; =3 T oM"Y (r) (7a)

e 0
..z _.m (r)
R i oA O ()
The former quantity must be a continuous function of r.

The magnetostatic equations (7xh=0, V-h=-V-m) require that

a2 Il ey (1ey?) - (2a)

dr r

or equivalently from (6).

2 2
dy _moq_,2y 4 (Z7+0")y+27c  dZ (8b)
w (-y7) + (702 (1) |
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and ( 2 )
dp 2y , on"=1)+p dZ
dr v (] p) # ZZ+Z-02 dr ' (8c)

In reqions where dZ/dr=0, y and p are each of the form (r2lm{-c)/r2‘m’+C)

where C is a zonstant; in air regions y° =y,
In reaions where dZ/dr is very large, the first term on the RHS may be
neglected and Eq. (8c) integrated directly.

Boundary Conditinns at the [dge of the Parallel Plate Region

As a concrete example, consider a thin ferrite disk of thickness d and
radius R placed between perfectly conducting circular plates that extend to
the radius Ro. The cylindrical surface r=R0 is assumed either conducting for
lz] < d/2, (a) or for |z|>d/2, (b).

For (a), n=0 at the radius r=R and from Eq. (7a), v°(R_)=0.

)
For (b) a reasonable approximation valid when d/RO<<1 is

2mR % P

——~°+1+2 0
[v®(m,R ,] L—L n Z]m[ij] d ) (9)

o
Solutions Whin Z(r) iﬂg;iﬂfBan}/(Av+BﬁEE)_

In order to develon insiqght into the character of the modes that result
when Z(rj forms a potertial well, we corsider this general class of profile

for which Eq. [(8¢) reduces to

z
) o(p- X) (p+ %;)
T 2n (Z- }\*1—(-— ) (z-zxj(pzxﬂj (10)
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Once & solution of [q. 12 is found, it can be applied to profiles with any
desired value of B.
Wnen A ~e, this family reduces to Z=A+Br2n analyzed previous1y.5

Sketches of possible rf magnetic field contours are given in Tig, 3 of

Ref. 5.
For weak gradients, }BRzn}<<1 and non-"virtual-surface" modes exist for
m>0 when
T+y%(R ) 2m
N m 2n 1 - 0 R
Qm_A+ﬁT'mBR *2[1+]W (Ro> ] (1)

Solutions for n(Z)

A series solution for p(Z) valid in the vicinity of Z=ZO can be obtained by

assuming
K
p(Z) = ¥ €. (z-7.) 12)
k=0 k 0
and using £q. (13) to find the recurrence relationship amonqg the various
coefficients, Cy» given that C0 = p(ZO).

The special cases ZO=A0 or A_must be handled separately and the series
representation gencrally fails when F(rx) "7, ¢ (V144 7-1)/2 brcause ot o
"virtual-surface" y(rx) is singular and the radius of convergence for the power
series goes tc zero.

On the other hand, from Eq. (10) it follows that p(ZX) = Zx/o (or possibly
-o/Zx) and the finite value allows one to integrate p(Z) through the virtual
surface.

The result of a detailed analysis reveals that with u = (Z—Zx)/(ZX-AO)

A )(7-
"« uad w] (A-1,)(7-2,)

s x_udd o o w o
plu) =5~ - S / [L+zx+1 on TR (R =2)

-
(F%)
~—

where for Amym,w(u) satisfies the follewing form of linear equation with

nonconstant coefficient
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2. 5 .5
I i d"l + ( v

5« }
: ST TR T i

2
Rou™) S+ (1
du2 K=1

usina the method of Frabenius, the solution of Co (13} is of the form

W~ (Ch+ln[ui) ib uK+ Todyu

- k=1 k=1 K
g are constants related to the RK, PK’ OK coefficients and Ch is

k (15)

where bK and d
an inteqration constant used to match between the powver series expansions of the
form of Lq. (12) used on either side of Zx' The solution is valid when 'ul<]
but it is elsc possible to exnand W i1n powers of u'] and hence obtain the
asymptotic behavior for larae Z,

It should be noted that exchange efFectsg’]o

at the "virtual-surface" are
ignored in this model.

The properties of an m=1 "virtual-surface" mode are illustrated with tihe
profile 2 = .2 + 1.095(r,’R)4 for which, if y (m=1,R) = -1, such a mode cccirs
when 7 =655 ., The associated m-field, h-field and b-field loci are plotted,
respectiveiy, in Figure {4a,b,c) with the "virtual-surface” radius (rx = ,385R)
shown by the dotted circle. Notice the reversed directicn of m leading to
"surfacc” magnetic noles near rer.- Notice too, that p(r/R - .59) = 0. Alona
with chvinges in 7, larger values of BR4 will cause r to shrink; smaller values

to expand.

Synthesized Macnetostatic Resonances in a Nonuniformlv Biased Thin Disk Mithout

Conduciing vourddries

If the conducting plates bounding the ferrite are either separated or removed
entirely, the rf field inside the disk will fringe. Then field variations with
respect to z may be important even for the guasi-two-dimensional modes, as the
outer and inner fields interact alona the entire disk surface. If the ferrite
is comparatively thick, z-variations in both ﬁdc’ and hence i , will occur and

mode localization effects due to these vertical gradients can be expected.
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When the disk is thin, the gradients weak to moderate, so that the modes
in questisn do not have "virtual-surfaces, another forw ot analvais i«
convenient, We here review that alternate approach.]]
The complex mgnetostatic potential within the ferrite is approximately
e™Ime

. . . i
where r and 4 are cylindrical coordinates the factor e“/t

given by v=R(r)
is again suppressed and m is a positive mode inteqger.

We again choose to work with dc fields and frequencies that are normalized
to the saturation megnetization M of the material. However, we now generalize

the dc bias to be

N Zn
Ho/M=1Z2(r) = A+ £ Br (16)
z n
n=1
In terms of circularly-polarized small-signal magnetization vectors
A= m,(r) (T 357,) ™ (17a,b)
and their associated scalar susceptibilities x- - 17730 the equation 7-h=0
and Vxh=0 become
v.[O+z-)m e ()i )= 0 (18a)
Vx[(Z=)i 4 (Z+0)R 1 = 0 (isb)

Because the field gradients are assumed to be modest, the mode frequencies
for low order m will satisfy |Z-@|<<1 and @ ~ will be small. Therefore W' is
expected to be approximately Laplacian in character and, in fact, detailed
perturbation analysis reveals that when Im_/m_ |<<1 the associated potential

inside the spheroid is

. N B :
i Q-A N 2nq rym=jmé
o= om I ! 13)e (19)

whereas outside it, the potential satisfies Laplace’'s Equation. Both 7 and the

the normal component of b are continuous at the boundary.
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The aoplication of the boundary condition vit 4% gver the boundaryv surface
js straight-forward, but calculation of b;=b2 involves evaluation of
au' /2210,
Fortunately, there is an alternate wayv to oroceed that circumvents this
difficulty; we calculate the dominant contribution to the far field potential
from our knowledae of the form of m inside the spheroid and match it to the

asymptotic value of ¢°. The net result is that a mode exists whenever

- 1 2 1 4, 1
m m+] m+2
where
m+l
a a
) (E) Fm (E)
M{m) = U (21)
(m-1)12

m-2)11 + (2m=1)(2m-8) 1172

and ~
Fum (2) = (2m-1) 11" sin™ (D) /%?:‘ [(
s (2001 (2o=3) (2nm6) 1Y L (2em) 11 0™ (22
where nt! = n(n-2)}(n-4)...
which both v'm-0 and b/a-0.
In such cases, retaining terms in h that are first-order in ko2 , leads to

a modification of the normalized frequencies 2 that can be incorporated by

5
m
letting
, (koa)2
N(m) 4 N(m) - mT)

As expected, this correction is largest for m=1,
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Synthesized Dispersion Relaticns

If it is desired to create a spectrum with the resonance freauencies

separated bv pre-specified amounts or if one wishes to control the velccity

)
can be adjusted and the required field Hz(r) synthesized. In the former caue,

of energyv circulatian v; of individual modes, the independent constants Bn

Eq. (27) 1is used alone whereas in the latter, the relation vg(m):r~u(m)/'n
(analagous to the aroup velocity for a plane wave) is also emnlaved.

It is useful to realize that vg can bhe forced to be independent of m over
some range of m, This also sugqests that magnetostatic plane wave propanation
can be made precisely nondispersive over a predetermined bandwidth.

Control of vg not only affects the qroup delay of signals propbagating throun’
the mode but also the total enerqy, E, of the mode in terms of the siqnal power
P¢. The coverning relationship is E=2vrP¢/vg. The important point to be
realized is that the normallv slow energy circulaticn that occurs when Bn:O can
either be speeded up or slowed down. In the latter event, the divection of net

power flow can even be reversed. Near the balance voint where V;

Because nonlinear behavior, due to

0, E becorics
very large, for a fixed value of P¢.
paramctric spin wave instabilities]3, occurs when the enerqy density of ihe
mode reaches a critical value, it follows that the threshold nower of limiting
level should be gradient controllable,

Consider two examples in which both koa and N(m) are neqliqgible,

In the first, we require thathB] and 82 force 20/ m=0 tTor m=] and .31 for
m=2. The required values are
2a4
In the second, we require that B], 82 and 83 force 30/ m=,01 for m-1 and O

Bja” = -.267 B, = .344

for m=2 and m=3,

The required values are

Ba? - 477 Bt - 12 Bya® - .73
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In Figures (5a,b) and 6a,b) the values of 9(m) and 3%/9m are plotted vs.
m for the two cases; in igures (5¢) and (6c) the required field profiles of
7-A are plotted vs. r/a.

Field Synthesis

In order to normally magnetize a very thin disk of magnetization M so as
to produce within it the normalized field HZ-M = A+Br2", we first create the

free space dc magnetic potential.

~ n n!4n
Y= CO + (A+] )MZ + (-]) (m BMP*2n+](Y‘,Z) (23)

where P;(r,z) = (22+r2)"/2 P;(cose), tan® = r/z and P; is the associated

Legendre function of degree n and order zero. These polynomial satisfy the

recurrence formula

px =

2n-1 n-1 2.2
— 2 P*n-l - *ﬁ—~(z +r )P*n~2 (24)

. e
with PO 1.

The field associated with ; can be qgenerated utilizinqg high permeability
pole-pieces designed to follow suitab]e‘equipotentia]sfor Eq. 23.

If the thin disk is located at the plane z=0, and centered at r=0, the
boundary conditions will be matched (neqlectina fringing at the rim) and the
required Z(r) generated inside the disk. Notice that through the‘use of super-

position, any field of the form H (r) = = o r2" can be synthesized.M

n=0

Magnetostatic Modes and Waves in Films with Nonuniform In-Plane Bias

The analysis of three-dimensional modes in films with nonuniform in-plane

bias by means of a coupled integral equation approach will be presented at the

1980 Conference on Magnetism and Magnetic Matem‘a]s.]5

The prospect of quiding magnetostatic waves is of considerable interest

16

because of possible device applications. Such auided waves might be used to

increase the delay time realizable on a given size sample by meadering the path,
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or to make a resonator by quiding the waves along a closed loop. In addition,
controlling the coupling between adjacent waveguides could make possibic siqual
routina devices such as directional couplers,

Guiding such a wave is complicated by the fact that MSSW propacation is
only possible 1in oﬁe direction on a given surface when the applied in-nlane
bias field is um'form;17 turns of 90° would normally require conversion to back-
ward volume waves.

It should be possible to overcome this difficulty bv emploving gradients
that arise from a change in the direction of the bias field. As an example,
consider a YIG film that is covered with permalloy containing a slot of controlled
width, If the permalloy is at a different magnetostatic potential on either
side of the slot, the dc magnetic field will be parallel to the film in the
region underneath the slot but normal to the film surface in those porticns
directly underneath the permalloy.

The in-plane fields permit magnetostatic surface wave propagation; the
normal fields do not . Therefore the surface wave energy should be localized
under the air-filled slot rather than under the conducting permallov; cddv
current dissipation is thereby minimized.

Notice also, that if the entire bias field is normally directed, the surface
wave disappears completely. Taken together, these factors should allow novel
control of the surface wave channel.

We here review Stancil's experimental observation56 of MSSW propagation in
a rectangular YIG film centered in the slot between strips of hiagh permeability
metal foil. The results indicate that surface waves can propagate in such a
geometry but with modified dispersion characteristics, as expected.

The aecnetry of the experiment to be described is shewn in Fig. (7). The
sample is a 4.5 micron thick film of YIG approximately .28 cm wide and 1.09 cm

long. The fine wire antennas are 50 microns wide and separated by 1 cm.
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The results of the experiments can be summarized as follows:

1. As the gradient is increased, by decreasing the space d between the
permalloy stribs, a series of discrete modes appears on the low frequency side
of the MSSY band. This behavior is illustrated in Fiqure 8.

2. Reversing the polarity of the bias field results in sl ghtly reducing
coupling to both the continuous and discrete modes implying that these modes
have a nonreciprocal surface localization similar to conventional MSSH's.

3. Although the discrete modes show evidence of nonreciprocal surface
localization, they appear at frequencies below the bottom of the surface wave
band at the center of the film as calculated from the corrected fields at y=x=0,
The arrows shown in Fig. 8 indicate the bottom of the MSSV band for each d as
calculated in this way.

4. The slope of the nhase was used to calculate approximate group velocities.
The discrete modes propanate several times faster than the normal MSSW modes.
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Figure Captions

figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.

Experimental confiquration (a) partially exploded view
(b) cross-sectional view

Microwave couplina between two antennas as a function of frequency.
Antennas located along the crystal center line with Hdc = 2300 Qe.

Coupling between antennas as a function of crystal position with
frequency = 2.46 GHz and Hdc = 2300 Oe.

Locus of field lines for the "virtual surface" mode Q(m=1) = ,655

when Z = ,3+1.095 (r/R)“. The rf m-field is shown in (a) the
h-field in (b) and the b-field in (c). A1l patterns rotate at the
normalized frequency §l. The "virtual-surface” (shown dotted) occurs
at rx/R = .385 .

The normalized mode frequency (a) and pre-specified enerqy freauency
(b) both plotted vs. mode numher together with the required field
profile (c) plotted vs. radius.

The normalized mode frequency (a) and pre-specified enerqy frequency
(b) both plotted vs. mode number together with the required field
profile (c) piotted vs. radius.

Basic experimental confiquration.
MSSH transmission spectra as a function of the spacing between the

permalloy strips. The fine structure near the high freguency end
is due to interference with the EM feedthrough,
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Section A-A (b)

Figure 1
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{b) h-field locus

{a) m-field locus

&

{¢) b-field locus
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Effects of Exchange in Nonuniform Fields
I. Introduction

In this Chapter we will
discuss how nonuniform fields along with the exchange interaction can
localize volume wave excitations in a normally magnetized thin film between
conducting plates. Although the presence of the conducting plates is
undesirable from an experimental point of view, a significant mathematical
simplification results which in some cases allows closed form solutions to
be obtained. These solutions give insight into the role of exchange in the
localization of magnetostatic waves with nonuniform fielas.

The simplest field nonuniformity is, of course, that of a
one-dimensional linear profile. Such a profile has been used to synthesize
linear delay~vs.=-frequency characteristics in single crystal YIG rods (29).
In this Chapter we discuss the possibility of a similar application of
linear profiles in thin ferrite films., Also, since an arbitrary
one-dimensional profile can always be linearized in a small region about a
point of interest, the understanding gai.ed from the study of a linear
profile has very wide applicatioas.

A profile which could be used in signal routing applications is the
one-~dimensional quadratic profile. We will show that a magnetostatic wéve

can be confined by such a profile and made to propagate along the direction
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transverse to the gradient, much as water is guided by a trough.

Third, we will show that a magnetostatic mode can be totally confined
by a two-dimensional quadratic field profile. Such a confined mode, or
resonance, could form the basis of a tunable microwave filter.

As a bonus, the calculations predict the existence of a continuum of
spin wave modes at frequencies above the top of the volume wave manifold
confirming an earlier theory described by Eshbach (30) based on a
quasi-uniform plane wave approach.

Although we have motivated the study of these particular profiles using
possible device applications, we should point out that the primary value in
the solutions to be described is in understanding the role of exchange in
nonuniform fields; it is doubtful that modes dominated by exchange will be
of great practical interest due to hign propagation losses. It seems
certain, however, that analogous mode confinement will result if the wave
dispersion is dominated instead by the dipolar interaction. This would be
the case in the more practical geometry of a ferrite slab without
conducting plates.

Although the present study was begun because of questions raised by the
virtual surface theory (12,15), our geometry differs from that of
Morgenthaler's in one important respect. The properties of the virtual
surface modes depend crucially on the boundary conditions at the edges of a
finite width or diameter thin film. In our geometry the film is of
infinite exteant in the plane; hence edge effects are completely neglected.

It is clear that the modes obtained by the two methods will not in general
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be in one=-to—-one correspondence. However, it will in some cases be
possible to draw connections between the two theories, and these will be

stressed where appropriate.

II. Expansion in Normal Modes of the Magnetization

It is well known that the linearized torque equation reduces to a
Schrodinger equation when dipolar interactions are neglected (31). When
solutions te this are known, it is sometimes possible to construct a set of
basis vector-functions from which solutions to ltaxwell's equations in the
magnetostatic limit can be comstructed. We construct a set of basis
vector-functions in a manner similar to that used by Vendik, et al.
(17,18).

The geometry considered is that of a thin sheet of ferrite between
perfectly conducting plates (Figure 2.1). The ferrite is assumed to be
unbounded in the x and y directions. The material is magnetized by an H
field whose only component is in the z direction but which has some
arbitrary variation along x and y. This {s strictly not allowed by the
requirement V x H = 0, but can be a reasonable approximation if the
thickness is sufficiently small. Although the applied field is nonuniform,
the material is assumed to be saturated everywhere. The presence of the
conducting plates allows us to consider fields which depend only on x and
y. All fields depend on time through the factor exp(~iwt).

As shown in Appendix A, the linearized equation of motion for the

magnetization can be written

h = Agp'm (2.1)




Figure 2.1.

-84~

Ferrite

Geometry for exchange calculations




where

Lo
1

w , Z = Hoeff/ Mg ,
~YugMg
h is the rf magnetic field, Hoeff is the total effective dc magnetic field,
Mg is the saturation magnetization, Aex is a phenomenological exchange
constant, and Y is the gyromagnetic ratio (negative).
Suppose that the eigenvectors and- eigenvalues of ;op exist and are

known; i.e., assume the equation

Aop°Sy = a5y (2.2)

has been solved. Since ;op is Hermitian, the eigenvalues (a;) will be
real.

Let us assume that the magnetization can be expanded in terms of these
eigenvectors (the success—or failure—oi the method will determine the

validity of this assumption). The magnetization can then be written

-ﬂ; = Z ngz . (2.3)
2
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The magnetic field can now be obtained easily from m in this

representation:

o= ] cgagSy - (2.4)
2

We can now substitute (2.4) into Maxwell's equatioans in the
magnetostatic limit and look for the coefficients (cg) and eigenvalues (ay)
such that the equations are satisfied.

Having outlined our approach, let us return to the eigenvalue problem
(2.2).

Note that Zop can be written as the sum of a scalar operator and a
matrix operator

- - 0 1
Bgp = (2 = Xex": I + @ [_1 0] (2.5a)

Aop = Rop I + 9 Pgp (2.5b)

where Ryp acts on the space of arbitrary functions of x and y and Pop acts
on the space of two~dimensional complex vectors. As a trial form for the

eigenvectors, let us consider
Sy = £(x,y)p (2.6)
where f(x,y) is an eigenfunction in the space of Rop given by

Rop f(x,y) = p £{(x,y) (2.7)

and ; is an eigenvector in the space of Pop given by
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P *p=-909p . (2.8)
(The reason for the minus sign will be discussed shortly.) The eigenvalue
equation (2.2) becomes

Agp * Sy = (Rop I + Q Pop)f(x,y) P

P Rop £(x,y) + @ £(x,y) Bop * P

(p = Q a) £(x,y) P
= (p -2 a) Sy (2.9)

which implies ag = p - Q@ 0. The problem therefore reduces to solving the
" two eigenvalue equations (2.7) and (2.8).

Equation (2.8) is‘readily solved and the solutions are

- 1 1
Pg = — ; o=t 1, (2.10)
v 2 | oi
We have been wssuming that the subscript 2 on the eigenvector Ei is a
general counting index which ranges over all possible eigenvectors. At
this point it is advantageous to modify the notatiom slightly and to
substitute the subscripts n and o. It is understood that n ranges over the

solutions to (2.7) and ¢ ranges over the solutions to (2.8). Hence

1 c2 S =1 cng Sno (2.11)
2 n,o
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The vectors ;o are the polarization eigenvectors of the magnetization.
The vector ;41 corresponds to right~hand circular polarization (thumb in
the ; direction) and 5;1 corresponds to left-hand circular polarization.
The choice of the minus sign in equation (2.8) establishes the convention

that o = +1 corresponds to resonant precession (RCP) of the magnetization.

We now turn our consideration to (2.7). We have
(z - Aex Vt‘) fn(x)y) " Pn fn(x)y)
which can be written

92 fa(x,y) + L [pg = 2(x,¥)] £4(x,y) = O (2.12)

)‘ex

Solutions to this Schrodinger equation will be discussed in the following
sections. )

The eigenvector-functions (Spy) discussed in this Section can be
thought of as the normal modes of the magnetization or spin wave modes
(17).

Note that if Z(x,y) were a constant, (2.12) would be a simple wave
equation. If the dimensions of a finite sample were taken into account,
only waves with certain discrete wavevectors would be allowed. This was,
in fact, the case in the problems discussed by Vendik and Chartorizhskii,
and would also be the case if this method were used to describe the Walker
modes (69) of a uniformly magnetized sphere. If the sample were infinite

but the field were nonuniform, the wavevectors could still be required to

be discrete just as the energy levels of a quantum mechanical harmonic




-89~

oscillator are discrete. In this manner we shall see that the gradient

can confine a3 mode even in the absence of boundaries.

II1. Magnetostatic Waves Guided by One~dimensional Bias Field Profiles

A. General Formalism
In this section we will assume that the bias field is given by a

function of x only and that f£,(x,y) is of the form
fn(X’Y') = ¢n(x) eiBy (2.13)

Equation (2.12) becomes

3200(x) + 1 oy = Aex 82 = Z(x)] ¢p(x) = 0 (2.14)
ax? Aex

For the moment we will assume this equaion has been solved and consider the
constraints imposed by Maxwell's equations when taken in the magnetostatic

limit. These equations are given by

¢ xh =0 (2.15a)
7. * (m+h) =0, (2.15b)
The magnetization is given by

m = | cag dn(x) eiBY (2.16)
n,o

from which h is easily obtained:

h = | apng cng dn(x) elBY p, (2.17)
n,o
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The x and y components of m and h can be obtained with the aid of

equation (2,10):

1
My = —— z c on (x) elBy (2.18a)
STag oot
- L (x) elBy (2.18b)
= — g c dnix) e .
my /—2 n,0 ng n
! 18
hy = = ngaana Cno n(x) elBy (2.19a)
i
hy = 7:% n§o° ang Cng Pnlx) elBy (2.19b)

The curl equation (2.15a) requires

hy _ dhx . g (2.20)
Ix dy
which becomes
} {apg cng (a 3%n = 8ey)] = 0 (2.21)
n,ag Ix

In a similar way the divergence equation (2.15b) requires

) d
—(m_ +h )+ + h = 0 2.
37 % x) 3y(my y) (2.22)
which becomes
Vil +apg) cpg (3% -8 o sq]) =0 (2.23)
n,ao Ix
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B. Solutions for 8 = 0O

A significant simplification occurs for the limiting case 8 = 0 (this
is the cutoff condition for propagation in the y direction). Since the
derivatives in (2.21) and (2.23) cannot vanish for all x (except in the

trivial case), we have the conditions

¥ agg cpo 0 = 0 (2.24a)
n,o

7 (1 +apg) cpg =0 (2.24b)
n,o

for each n. Expanding the summation in (2.24a) gives the relation

Cn"' - an- (2-25)
T  Ant

where the subscripts % are shorthand for o = 1. Substituting this into

(2.24b) and making use of the expression for ang in (2.9) gives
Q2 = oy (py + 1) (2.26)

where p, is the nth eigenvalue of the equation (cf. equation (2.14))

3% + 1 (o - 2(x)) 6q = 0 (2.27)
ax? Aex

Note that if we can find a solution to (2.27) for a given Z(x) we have
found an exact solution to the magnetostatic wave problem for the case
8 = 0. In such a case the frequency is given by (2.26), the polarization

of the magnetization by (2.25) and h and m are determined to within an
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arbitrary coanstant by (2.16) and (2.17) evaluated for 8 = 0.

C. Linear Bias Field Profile
Consider the following normalized bias field profile:
Z(x) = 2, + B %o (2.28)
In the calculations which follow, we consider only the case 8 = 0 for

simplicity. Equation (2.27) becomes

tn+ L (pn=2g=Bx) g =0 (2.29)
ax? Aex

Let us make the following change of variables

x=af =~ (Zy,+pg) B (2.30)
where a is a characteristic length to be determined and £ is a

dimensionless variable. Upon this substitution (2.29) becomes

3200(8) - B a3 € ¢n(&) = 0 (2.31)
ag? Aex

We can now choose the characteristic length (a) so as to simplify the

equation. We therefore choose

a = (Agx / B3 (2.32)
which gives

ii°“(£) - £ ¢n(E) = O. (2.33)

3g2

The solutions to this equation are the Airy functions Aj(£) and Bj(§).
If we were considering a general boundary value problem, a linear

combination of both functions W“ould be necessary. However, for the present
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infinite medium problem only A1(Z) is permitted!. The solution in terms of
x is given by

¢(x) = Ay(x/a + (Z, = 0)/Ba). (2.34)
The subscript n is no longer necessary since only one solution is being
considered.

According to Morgenthaler (l5), the "virtual surface” in the absence of
exchange would be located at the point of inflection § = 0 of the Airy
function A{(£). The location of the virtual surface, or turning point, in
the x coordinate 1s then given by equation (2.30):

Xep = (p ~ Z4)/B (2.35)
where the subscript "tp"” refers to the turning point. The frequency is
given by

Q% = (B xgp + Zo)(B Xep + Z5 + 1); B x¢p > ~Zo (2.36)
which, when x¢p = 0, reduces to

Q2 =z, (Z, + 1) (2.37)
which is the same frequency obtained by lMorgenthaler (15). Although the
present mode does not have precisely the same functional form as a virtual
surface mode corrected to include exchange, we see that both theories
predict that the turning point occurs at the position where the field
places the frequency at the top of the volume wave manifold, which is where

the virtual surface occurs in the absence of exchange. (These results are

IStrictly speaking, our assumptions of a linear bias field profile, an
infinite medium and saturation of the magnetization throughout the material
are not selfconsistent; there will be some negative x for which the field
is not strong enough to saturate the magnetization. We can imagine,
hovever, that the material is terminated with a perfectly absorbing
boundary at some negative x at which the magnetizatijon is still saturated.
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also in exact agreement with those of Eshbach (30) even though he only
considered dipolar effects in an approximate way.)

Note that in the present case p can assume a continuum of values each
corresponding to a different location of the turning point.

This solution can be thought of as a standing wave resulting from a
spin wave incident from the left and being totally reflected at the turning
point. Equation (2.36) indicates that the higher the frequency of the
wave, the further it can penetrate into the material. This can be
understood qualitatively through a consideration of the strong field limit
(B Xep + 2o >> 1) from the quasi-particle viewpoint. In this case,
equation (2.36) states that the magnon is reflected from the point at which
the strength of the potential energy barrier (= B x + Z,) is equal to the
energy of the magnon («= Q).

The possibility that different frequency components may be reflected at
different depths into the crystal suggests that a linearly dispersive delay
line could be made usign this principle. A major problem with building
such a device would be coupling to the very high wavenumber spin waves
involved. Based upon earlier work by Strauss (32) and others, Platzker and
Morgenthaler (29) have described a linearly dispersive delay line using a
linear field profile in a YIG rod. Coupling to the high wavenumber spin
waves in their case was accomplished with a clever scheme making use of a
backward-wave region of the dispersion diagram (present as a result of the
boundary conditions involved) and phonon-magnon coupling. Perhaps a

similar scheme could be employed to
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fabricate such a delay line using thin films.

If the problem of coupling to these modes can be solved, their presence
might be directly confirmed using optical probing. The one=-dimensional
standing wave pattern described above would appear as alternating stripes
of large and small cone angles. This could act as a diffraction pattern
for properly polarized and analyzed light passing perpendicularly through
the film (33,34).

We have mentioned that the standing wave pattern resulting from a
linear field profile would involve very short wavelength (high wavenumber)
spir waves. It is instructive to consider a numerical example.

For large negative arguments, the function A1('|E|) is approximately

1 2
- T —— - 3/2
AL(-1gl) SVERPTIV sin | 3 lgl + /4 ] (2.38)

Because of the [£[3/2 in the argument, the period of the sinusoid will vary
with position. We can estimate the sinusoidal period near a position £, in

the following way:

2

;(Ieo + 8€13/2 - [£,13/2) = 2x
which gives Af = 2n//E, . But £ = x/a, so

ax = 2n [ a3 = 2n [ lex . (2.39)
Xo Bxo

where x, i1s the distance from the "virtual surface.” For a gradient such
that B = 1 cm™! and assuming Aex = 3 x 10712 cm?, the wavelength | cm from

the virtual surface i{s approximately 0.1l um.
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D. Quadratic Bias Field Profile
1.Basis Eigenvector-Functions
We next consider a normalized field profile of the form!
Z2(x) = Z4 + Bx? (2.40)
We begin by considering the problem of an arbitrary 8. In this case
equation (2.14) becomes
§;§n<‘) + ii_ﬁpn - AexBZ = Zo = Bx2) ¢p(x) = 0 . (2.41)
ex
As in the linear profile case, it 1s desirable to express this equation in
natural units. We do this by making the change of variable
X = a, § (2.42)
where a, is a characteristic length to be determined and § is a
dimensionless parameter. Equation (2.41) becomes

220n(8) o [ %% (py = Zo = hexB2) = B %" £2 ] 0q(6) = 0. (2.43)

3€? Aex Aex

It is now clear that we should choose

ap" ® Aex / B (2.44)
which gives

3leq [ {Pn = 2o = Aex82) _ ¢2 ] ¢ = O. (2.45)

362 B )‘ex

The solutions to this equation can be immediately obtained by noting

that it is of the same form as the one-dimensional harmonic oscillator

IThe units of the generic gradient parameter, B, vary but should be
apparent from the context (cf. equations (2.28) and (2.40)).
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equation

2y 4+ (2 -£2) y =0 (2.46)
3¢2

Acceptable solutions to this equation exist only for discrete eigenvalues
which are
e=n+1/2, n=0,1. .. (2.47)

Identifying terms between equacions (2.45) and (2.46) gives

on = (20 + 1)/Blay + Zy + AexB? (2.48)

or
ang ® (2n + 1)/Bhgy + Zo + AgyB2 = 0y 0, o = %I, (2.49)

The solutions to (2.45) are the Hermite—Gaussian functions
-52/2 .
0n(E) = Hn(E) e (2.50a)
@0 at /a2
or
-x2/2a42

¢n(x) o Hn(x/ao) e ° (2.50b)

(ag 20 n! 7/ )1/2
where H,(§) is the nth order Hermite polynomial (see Appendix B).

Combining (2.6), (2.10),(2.13) and (2.50b) gives

~ 1 1
an - i [ ] Qn()() eiay (2-51)
v 2 | io

Using the orthogonality properties of ¢,(x) (see Appendix B) it is

straightforward to show that these vector-functions are orthonormal:

-— _ —_ * =
(Snldllsnzdz) -.£ snlcl . Snzqzdx = 5“1“2 60102 (2.52)




-98-~

2. General Solutions
Using equation (B.13) for the derivative of ¢,(x) allows us to write

faxwell's equations (2.21) and (2.23) as

! I {9 30 cng [¢n-1 / B = b+l otl] - apg Cng B 0n | = 0 (2.53)
0 n=o o 2 2

(l4agg) - - +1
) {“6322' ¢ng [ ®n-1 / %, bn+l 'Ef- ]

¢ n=oQ

-80 (1 + anc) Cno ¢n } = 0 (2-54)

Finding the coefficients (c,4) and the frequencies (f,) which satisfy these
two equations will give the general solutions for the problem. It is
useful, however, to consider approximate solutions coastructed with only
the first m + 1 eigenfunctions. The summations in (2.53) and (2.54) can

then be reordered to give

m~-1
Y Y [ 93n+l,0 Cn+l,o ntl - 9 3n-l,6 Cn=l,0 /n
g n=0 Qg Y3 aq 2

~ B g9 Cng | %n

-1 [ %3m0 Cui,o //E— + 8 apng Cpg | bn
g ag 2

-7 93ms Smo /ol ppy; = O (2.55)
g ay 2
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o-1
I D[ *antl,a) cprr,o /¥l - (2% 20-1,0) cpoy,6 /B
¢ n=0 Qg 2 Qg 2

- B8 0 (1l +apy) cpg | on

= Z [Ei.:.i!:l;ﬂl Cm=l,0 //% +8 0 (1l +apg) cgg ] bm
o aq

-5 +apg) cpg /ot bge) = O (2.56)
2

g Qo

In order to satisfy these truncated equations exactly, the coefficient of
each ¢, must vanish because of orthogonality giving a total of 2Zm + 4
equations. However, there are only 2m + 2 unknowns so that in general the

equations cannot be satisfied exactly. To pursue this apprcach further

either of the following procedures can be attempted.

a. Minimize the space average of the equations.

Instead of requiring (2.55) and (2.56) to vanish everywhere, we can try
to minimize the average of their absolute squares or absolute values over
all space. The equations so obtained would, of course, be nonlinear. In
addition, although we constrain Q, to be real, the cpy coefficients may be
complex resulting in a search for minima in a 4m + 3 dimensional space!

b. Satisfy the equations exactly at a3 finite number of points.

Alternatively, we can require the equations to be satisfied at 2m + 2
points. Although this method results in a set of simultaneous linear

equations, it is not clear which points we should choose in order to
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optimize the solution.

Because of these difficulties, we will not consider the general
solution further. Instead,.we will examine these equations for several
limiting cases in which significant simplifications occur. The case
for 8 = 0 has been mentioned already. In addition, the weak gradient

(/Bhgyx << 1) and strong gradient (VBlgy >> 1 ) limits will be examined.

3. Solutions for 8 = 0
Using the results of Section III.B we can immediately write down

solutions for 8 = 0. There is a solution for each n given by

Wy = Cot Sp+ lB 0 + cpe Sp= | (2.57a)

T +ae el B (2.57b
hp = ap+ Cp+ Sp+ IBTO ap- Cg- Sp- | \ )

where the polarization of the magnetizarion is

Cat . 3n- (2.25)
[ e
ans = (2n + 1) Blgy + 25 7 Q , (2.58)

and the frequency of the ath mode is given by
M2 = [(20+1)/Bhgy + 25 [(2n+1)VBhgy + 25 + 1] (2.59)

Note in this case that although the magnetization is elliptically
polarized, the small signal‘i field is linearly polarized in the x
direction (this can be seen by separating (2.57) into x and y components

and substituting (2.25) in for the coefficients cpgq).
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It is worth noting that localized non~propagating resonances have been
observed in tangentially magnetized thin films (35,36). In such cases it
has been proposed (36) that the inhomogeneity in the saturation
magnetization near the interface between the gadolinium gallium garnet and
yttrium iron garnet could give rise to an effective “"potential well” having
one bound state. Although the present analysis deals with an inhomogeneous
magnetic field rather than magnetization, the two problems appear to be
very closely related.

There are an unlimited number of modes in the present case, however,
since we have assumed an infinite paraboloidal bias field profile. It is
of interest to examine (2.59) in order to get an idea of the frequency

separation of these modes. Expanding (2.59) to first order in v BAgyx gives

U = VZo(Zo1) + (20+1)(220+1)/Blex (2.60)
2/ zo(z°+1)'

Using the parameter values (10) of 2, = .78, B = 13 cm™2, Agy = 3x10712 cm?
gives
82 = Qpq] = O = 1.4x1075.

This is at least an order of magnitude smaller than the line-width of the
best materials so that it should not be possible to experimentally resolve
individual resonances. Instead, they should manifest themselves as a
quasi~continuous absorption or transmission band immediately above the
volume wave manifold.

It is instructive to find the locations of virtual surfaces for these

modes as we did in the case of the linear profile. Using the definition of
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ay given by equation (2.44), the mode frequencies can be written

Qq = [(2n+1)Bag? + Z,)[(2n+1)Bay2 + 2, + 1] (2.61)
The frequency which would locate a virtual surface at a position x is given
by

Q2(x) = 2(x){Z(x)+1]

or Q2(x) = (2o + Bx2]{2o + Bx2 + 1] (2.62)

Given the frequency of the nfh mode from (2.61), the location of the
virtual surface can be obtained from (2.62). Clearly the expressions are

equal when (2n+l)ay? = x?, or

£ = x/ag = /2ol (2.63)
But this is simply the location of the turning point of the ath
Hermite—Gaussian function (see Appendix B). Thus we find, as before with
the linear profile, that the location of the virtual surface is coincident
with the turning point when exchange is included.

The previous analysis of propagation in a linear gradient also showed
that the location of the turning point could be varied continuously by
changing the frequency. The higher the frequency, the further into the
gradien: the wave could penetrate. Said in another way, the spectrum for
these waves is not a single resonance but a continuum. The situation in
the case of a parabolic profile is very similar. In this case, however,
there are two turning points symmetrically located about the center of the
well. The additional requirement made by this geometry is that the

osscillations must be continuous at the center. This requirement splits
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the continuum into a series of resonances which, as we have seen, are
very closely spaced for commonly realized gradients. The result is again a
quasi-continuous mode spectum. We shall see that this is a characteristic
of essentially all of the modes accessible with the present formalism.
Such a spin wave continuum was first discussed and observed by Eshbach
(30). Eshbach (30) also was first to discuss the behavior of spin waves in
linear and quadratic field profiles, although he did not solve for analytic
solutions which also satisfy Maxwell's equations in the magnetostatic limit
as presented here.

Finally, let us consider the spatial localization for the present
example. The characteristic length is given by

Ao = (Aex/B)/* = 7 um.

Thus we find that the modes near the top of the manifold are very highly

localized.

4, Strong Gradlent Limit, /EX;; » 1

We have already seen.that a relatively small gradient can give rise to
a highly localized resonance. For very strong gradients we can imagine
that the localization would be such that the exchange interaction would
completely dominate the resonance and the dipolar interactions could be
neglected. In this case equation (2.4) gives

Y 3no ¢no Sag = O- (2.64)
n,a

If all of the cqnq's vanished, then so would the magnetization and we would

have the null solution. Since we have assumed VBlgy >> 1, all of the
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apg's cannot simultaneously vanish-—even in an approximate sense=—but they
can vanish individually. From (2.49) we see that for 5 > O only the
eigenvalues apq for o = +1 (resonant precession) can vanish. We conclude

that each of the vectors §h+ represents a solution with the frequency
Qn = (20+1)/Blgy + Zo + AexB82. (2.65)
The magnetization for each mode is right hand circularly polarized.

S. Weak Gradient Limit, vBlgy << 1

Because of the small size of Mgy, the assumption that /EI:; Kl is
well satisfied in most experimental situations. In this approximation the
fact that adjacent apg's are degenerate introduces a redundancy which
reduces the 2m + 4 equations of Section ILI.D.Z to an effective set of
2m + 2 which can be solved exactly.

Expanding equations (2,.55) and (2.56) for an arbitrary m quickly
becomes cumbersome, so let us first consider a graphical representation of
the equations which can quickly give us some insight into which and how
many eigenfunctions are needed in order to construct a solution. A more
rigorous treatment of this method is given in Appendix C.

Consider a representation of the curl equation

EEY _ 33; -0 (2.20)
Ix 3y

illustrated in Figure 2.2(a). The indices of the Hermite=Caussian
functions we would like to include in a trial solution are listed in the

far left and right columns as terms in hy and hy, respectively. The
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hyx /3y 3/3x hy
0 * 0 * 0
1 N 0,2 . 1

(a) Vxh=0

by 3/3x 3/ 3y by
0 + 0 - 0
1 *> 0,2 - 1

(b) Vb =0

Figure 2.2. Diagrams representing Maxwell's
curl and divergence equations.
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indices of terms resulting after taking the appropriate derivatives are
listed in the inner two columns. By assumption, taking a derivative with
respect to v simply gives the same function times a constant (iB), whereas
taking an x derivative gives two terms with taiséd and lowered indices
according to equation (B.13).

Equation (2.20) says that the algebraic sum of all of the terms
represented in the inner two columns must vanish. Orthogonality of the
functions ¢,(x) further requires that the sum of all terms with a given
index must vanish. Thus the oval enclosing the terms representing n = |
indicates that the difference between these two terms must vanish. Note
that there is only one term with n = 2 so that its coefficient must vanish.
This requires all of the elements enclosed by the rectangular box to vanish
since they are all related through non~zero constants. This leaves only
one n = 0 term so its coefficient must also identically vanish. A similar
diagram can be constructed for the V - b =0 equation as shown in Figure
2.2(b).

These diagrams indicate that a solution may exist when hy « 6, and
hy = ¢5. If, on the other hand, all of the terms in both hy and hy were
required to vanish (as symbolized by enclosing all terms with rectangular
boxes), there would be no nontrivial solution for the particular set of
$n's included.

We have said that the diagrams of Figure 2.2 may represent a solution.
Experience indicates that solutions will exist only under the following

conditions:
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l. The eigenvalues (aj,g) of all included eigenvector-functions (§£o)

must be degenerate in n.

2. The fields in the curl (or divergence) diagram must not identically

vaanish.
In the present case, both conditions are satisfied since vBlgy <<l. We
conclude that the diagrams of Figure 2.2 do indeed represent a solution.

Before actually calculating the fields for this solution, it is useful
to consider a slightly more general case. Let us begin by considering the
nth eigenfunction and attempt to construct a solution by adding adjacent
eigenfunctions one by one. The diagrams of Figure 2.3 result. Clearly, a
solution exists if three consecutive eigenfunctions are included.

We will now calculate the field quantitfes for this mode. From (2.18)
and (2.19) the coefficients which are required to vanish by the rectangular

boxes in parts (c) and (d) of Figure 2.3 give

Cp-1,+ o Aan~[,- (2.66a)

oA .
Tam1,- Tn=1,+

cat . _ an- (2.66b)
Cn- n+
Ca+l,+ o 3nt+l,- (2.66c)
Cn+l,~- an+l,+

and
Caml.+ o _ (1 +ap-y o) (2.67a)
Cn-1,- (I +ag-) +)
cat . (1 + ap-) (2.67b)
Cn- (1 + an+)
Cptl,+ o o (1 +apsp =) (2.67¢)
Cn+l, - (1 + agsy, +)




Figure 2.3.

Constructing a solution around the ath eigenfunction.

r--------------l* —
I
-lug-
hy 3/3y 3/3x hy
n > n n-1,n+l - n
(a)
n > n n=1,n+l - n
n+l > n+l n,n+2 - o+l
(b)
n-l > n-2,n . n=-1
E : . a
n+l > + n+l
(c)
by 3/9x a/dy by
[ n-1 . . n-1
n + - nJ
[n+l »> n,n+2 n+l - n+l
(d)
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Equations (2.66) and (2.67) are cousistent if

3n-1,0 * 3ng * an+l,o (2.68)
and an- . (l4aq-) (2.69)
an+ (l+aps)

Equation (2.68) 1is satisfied 1f /Blgy << 1, and equation (2.69) is

satisfied when

Q2 = op(p, + 1) (2.70a)
where
25 + AgyB2 ; n small
Pp = — (2.70h)
20VBhgy + Zg + AexB% ; n large.

In order to find the relations between the coefficients of different n

we make the formal identifications!

3— - 8 (2.71a)
ay
(n/2)%/2 if index is decreased from n
— ->
IxX (2.71b)
- ((a+1)/2)12 ¢ jndex is increased from n
L)

Requiring the differences between the circled terms in Figure 2.3(c) to

vanish gives

8 cp-1,+ 8(ap+rap-) - 1_7/5 cn+ glapgs,apg-) = 0 (2.72a)
ov 2

{The i normally obtained in (2.7la) is cancelled by the i which appears as
a coefficient of hy (cf. (2.19b)).
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8 cn+l,+ 8(ap+ran-) + é_ ntl o+ 8(ap+sag=) = 0 (2.72b)
o]

where g(ap4,apn-) 1s a common function of each term and can be divided out.

We obtain, finally:

Co-l,+a 1 /n

o+ Bag 2 (2.73a)
Cntl,+ = - 1 Eti (2.73b)
Cat+ Bag 2 '

It is easily shown that under the condition v Bley << 1 equatioms (2.73)
also satisfy the remaining conditions of Figure 2.3(d).
Having obtained the frequency and the coefficients to within an

arbitrary constant we can now write down the fields. We have

(n) ‘
) - g ([t * Tl * SR o

28a,
(2.74a)
(n) _ icp+ 3n+ + An+), + / an+
K 28a, [/F;[l EE:]°n-1 s°°/FZ[1 3%:]¢n w1 3%:]¢n+1 }
(2.74b)
ho(n) _ Co+dn+ -/ 2.74
X Jﬁ— [/—n. ®a-1 o+l ¢y ] (2.74¢)
hy(n) = fcnians’Z o (2.76d)
ez(n) = Sn+Wlg [l-an.,.] s (2.74e)

8" 2 Fp-' o
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where we have obtained the above approximation to the first order electric
field from the Maxwell equation
7xem==-23b . (2.75)
ot
Substituting n = O in the above equations allows us to obtain the

fields for the previously discussed example:

(0) _ co+ /20 1 ~30+ - 1430+ 7
me ?’ = Z0 8a / 2[1-20*] 1420t (2.76a)
28a, { %o [ ao-'¢° { 30-)¢1 ]
(0) _ ico+ ag+ - [1<30+ (2.76b)
v ey e/ gzl " izt )
hx(o) - -~ Co+30+ o (2.76¢)
Bag
hy(0) = fcg4ae/? » _ (2.76d)
ez(0) . Cowlio ) 3o+ 4 (2.76e)

Wz T O

Note that the net electromagnetic power flow in the y direction is zero
for all of the waves described by (2.74) because of the orthogonality of
the Hermite-=Gaussian functions:

1 o -
pylem) « - Re{_i(EkE‘)'iy dx }

f ezh, dx

Ny~
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& [ pp(X)dpe1(x) dx + [ dp(x)op+1(x) dx
= 0, (2.77)

Thus the power flow in these modes Is carried entirely by the exchange
channel. The resulting group velocity can be estimated by expanding
(2.70a) to lowest order in lgx82 and taking the derivative with respect to
B. The result for n small is

2Zy + 1

VZo(Zg + 1)

Vg wplexB (2.78)
It should also be pointed out that the waves described by equations

(2.74) are not all mutually orthogonal with respect to the inner product

=
(Fi.Fp = [ F"F; dx
-
where Fi is any field quantity of the i%R solution. The solution for n is
orthogonal to those for n=l and n+l, but it is not orthogonal to the
solutions for n+2 and n-2. Hence the modes for n=0 and n=1 can be taken to
be the first two solutions of an orthogonal set, but solutions for n»3 must

be carefully constructed so as to be orthogonal to all lower solutioms.
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IV. Magnetostatic Resonances Bound to Two-dimensional Quadratic Bias Field

Profiles

A. Basis Eigenvector-functions

We would now like to consider normalized bias field profiles of the

form

Z(x,y) = Zo + Bgx? + Byy2. (2.79)

The eigenvalue equation (2.12) becomes

32¢ , 3% 1 2 2 2.80
+ + _la+Qs-2 ~Bx% -8 6 = 0. (2.80)
ax?  ay? xex[ 0 X y ]

which is of the same form as the two-dimensional harmonic oscillator
equation. Following the usual procedure of separation of variables, the
solutions can be easily shown to be products of one-dimensional
Hermite=Gaussian functions (Appendix B). The eigenvalues are calculated to

be

angn o " VBehex (2ng*l) + VByhgx (2ny+l) + Z4 = Q0 . (2.81)

and the eigenvector—functions are given by

- 1 1
sn naog = : [ } ¢n (X) On (Y) (2.82)
Xy /2 io X y
where ¢, (x) and 4, (y) are properly normalized one-dimensional harmonic
X y
oscillator wavefunctions as defined by equation (2.50b). These

eigenvector-functions are orthonormal in the sense that
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L J
| [ axdy Sy 0 6" Sup o= 8n 0 Sn ,m 8g,0° (2.83)
- —» Xy Xy x’ Tk y'y
B. General Solutions

We assume that the eigenvector-functions (2.82) form a complete set so

that m and h can be expanded in terms of them. We can then write

- Z €a n o §hxny° (2.84a)

Ny, ny
g

= I an.ngcan o San o (2.84b)
Oy, Ny Xy
g

|

The individual components of these fields are found to be

1
Oy = — ! can g $n ¢n (2.85a)
v 2 Nys Ny Xy Xy
g
i
oy == [ dcqgn 90y ¢y (2.85b)
/2 Ny, Ny Xy Xy
o
1l
hy = — 2 3n no Shn o $n n (2.86a)
v 2 fx, Ny y Xy Xy
o
i
h, = == E g a ¢ ¢on ¢ (2.86b)
b4 ) sy nxn g nxnyo nx ny
]

Applying the curl equation (2.20) to (2.86) and using equation (B.13)

for the derivatives gives
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1o fny - ny+l
a ?ny g {;; anxnyccnxnya[¢nx-l — ¢nx+1 X ]Qny

X 2 2
-1 hy - [og+111 = (2.87)
';;anxnyocnxnyc¢nx[¢ny-l _% °ny+l yz ]} 0

Similarly, the divergence equation (2.22) becomes

(1+ag ny0)
a ?n S X Cnxnya[¢nx-1 /Mx =bn +1 /oxtl]
2 2

]
X’y ay

+ 1o(l+ag q g)
— 'Gy"_y- Cnxnyo‘?nx[%y-l/%-z - fny+l EZL*_}_]}- 0 (2.88)
If we wish to keep only a finite number of terms in these equations we

must specify precisely how we are going to count terms. In order to do
this, let us define a principle eigenfunction index n such that

n = ny + ny. (2.89)
We will trﬁncate the series by keeping all of the terms (nx,ny) such that
ng + ny < n. Equations (2.87) and (2.83) can then be written

n a-n

I 1 i(ls

n,=0 ny=0 g Qy

a3 n o¢n.n g Yo -1,n
Xy Xy X y

-1 °x*! ap a0 ocn n o ¥n +1,n
ay 2 Xy XYy X y
-1 /2Y a5 0 o%n n o ¥n ,n -1
a 2 xy Xy X"y
Y
+ 1 /oy* an notnn o Va ,a+l b =0 (2.90)
ay 2 xYy x x'y
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n  n-n
x

) ! 1{_L /Bx (l4ag q o) n o ¥n ~1,n
ng=0 ay=0 0 ay ¥ 2 xy xy x y

-1 /Eiii (1+ag g g)¢n n o ¥n +1,n
Gy 2 Xy xy X y

+ 10 /oy (l+a de -
_— J/;Z L an.d an,ny 1

ay
- 2 /Ez:l (l1+4ag 5 g)Ca n g ¥n ,n +1 } = 0 (2.91)
2y 2 xy xy X’y

where ¥g n = ¢gq (X)oy (¥).
Xy X y

The solution to the general problem would be obtained by finding the

coefficients, cq n o» and eigenvalues, ap n ¢, Which satisfy——or minimize
Xy Xy

in some sense—equations (2.90) and (2.91).

Fortunately, it is possible to find a set of solutions which exactly
satisfies these equations when By » By. These solutions, as well as a

number of approximate solutions, are discussed in the following sectiouns.

C. Solutions for By = By

In order to avoid the complications of expanding equations (2.90) and
(2.91) without a good idea of how many and whi-h terms to include, we will
first explore different combinations graphically using a straightforward
extension of the method discussed in Section I[II.D.5. The rules indicating
the existence of solutions generallzed to the present case of a finite

number of two-dimensional Hermite—~Gaussian functions are:
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l. The eigenvalues (ay o) of all included eigenvector-functions
Xy

(ghxnyc) must be degenerate in (ny,ny).

2. The fields in the curl (or divergence) diagram must not identically
vanish.

The first condition is met for all neighboring eigenvector-functions in the
weak gradient limit (/ Byjigy <<l, i=x,y). It is also met for all
eigenvector—-functions belonging to the same principle eigenfunction index
when By = By. This latter case is the one we will examine in this section.

The curl equation diagrams for the first four principle eigenfunction
indices are shown in Figure 2.4. It appears that no solutions are possible
for n even, but solutions do exist for n odd.

The fields can be obtained from the diagrams in a manner very similar
to the one-dimensional case discussed earlier. We first make the formal

identifications:

_i if index is decreased from n,,
v
(2.92)
v 1

nyt if index is increased from n,.

QL
<
'
+
|
W ,\,I\:,l
N~ <
—

dy

We must also remember that the y component of each field quantity has a
factor of i (this factor was cancelled by the i in 3/38 + iB in the
previous case).

Let us first consider the solution for n=l. The components of hy and

hy which are required to vanish by Figure 2.4(b) imply
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hy 3/ay 3/3x% hy
00 . o] |10 . 00 |
(a) Fields vanish for n=0.

01 - 00,02 11 . 01
10 N 00,20  « 10
(b) A solution exists for n=l,
| 02 - 01,03] |12 . 02 |
[ 1 . 10,12 | 01,21 . 11
[ 20 - 21 | [10,30 . 20

(c) Fields vanish for n=2.

{03 > 02,04 13 . 03
12 > 3,/ |02,22 . 12
121 > 20,22 . 21
30 > . 30

(d) A solution exists for n=3,

Figure 2.4. Curl Diagrams.
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Col+ o - 3l- (2.93a)
Col- al+
Clo+ o 31- (2.93b)

—

Clo- 21+
Referring to Figure 2.5, the components of by and by which are required to
vanish give

cor+ . (14ayo) (2.96a)
Col- (l+apy)

Clo+ o - (l4a)-) (2.94b)
€lo- (1+a14)

Equations (2.93) and (2.94) can be satisfied only if

Q12 = [4/ Bhgy + 2o][47 Bhgy + 2o + 1] (2.95)
where we have used
ang = 2/ Bhgyx (n+l) + 2, = Q0 (2.96)
and B = By = By.
Requiring the difference between the terms enclosed by the oval in
either the curl or divergence diagrams to vanish gives the relationship
between the (0l1) and (10) eigenfunctions. From the curl equation we have

- _ 1 clo+ 8a14,a1-) + _ i colt g(aj,al-) = 0
ar 2 a’ 2

where g(aj4+,a1~) is a function common to both terms. This equation
simplifies to

Clo+ i (2.97)
Col+
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by 3/ax 3/3y b
—_ 7
01 . 1 [00,02 o1
{10 » 00,20 11 « 10
(a) n=1
Q03 > - m
,_Zi + - 21
12 + - EI
@ > 20,40 | . 30

(b) n=3

Figure 2.5. Divergence Diagrams




We now have all of the information needed to write down the fields for the

solution. We have

(1) = col+ a4 aj+ (2.98a)
Ty ° -2+ + 1[1+21F «J0a
A= ([ al_]wol [ al_leo}
(1) = icol+ [ri+dl+ + al+ (2.98b)
~Sol+ petl 1 1-_2T ¢ ‘
oy F (T2l + 1l al_] Lo}
hx(l) = legle 72 a1+ Vo (2.98¢)
hy(l) = icol"’ /-2_ a)¢ wol (2.98d>
ez(l) = —iwu°2c°1+(l+al+)u WOO (2.989)

Spatial maps of the field strengths and polarizations of m and h are
presented in Figure 2.6. Note that h is linearly polarized.
Repeating this procedure for n=3 (see Figures 2.4(d) and 2.5(b)) we

obtain the following fields:

(3) = co3+ a3+ i ae 1 a4 A3+
My Sodt ([1-23]y ., 4 (1483 ]y o+ __[1-23F]e, . + i[1+23% ]y}
7z e B /3 a2 as A aj- 30
(2.99a)
(3) . icod+ a3+ 1 a3+ ! ai+ a3+
oy 0w o ([ 143 y, + [1-23E e, + (1422 ]y, + 1[1-222 ]y )
==L Y3 U e T sl 2330
(2.99b)
hel3) = fco3a/Z aze Y12 + v ] (2.99¢)
3 30
hy(3) = fcy34/2 a3+ | w03 + ¥21 ! (2.99d)
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- 2 - .‘2 ’t .
. O o A »
0 1 Q ° . . 1 ’ .
o O Q 0 - N S -
tfede o :
) 2070 1 0 0?, & .'z"'/aL RN
o o “ ~
. / \ .
. o300 . ' -z# .
{a) (b)
ez
L A
0 3

Figure 2.6. Fields of the n=] solution in the presence of a z directed
bias field which is a symmetric paraboloid of revolution. (a) Relative
magnitude and polarization of m. The ellipses indicate the locus of points
traced by the tip of the small signal magnetization vector as it rotates
counterclockwise. (b) Relative magnitude and polarization of h. _
(c) Relative magnitude of the z directed electric field (ey). VUnlike m,
both h and e are linearly polarized.
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ez(3) = -lwpgcgi+ (l+ajyla _2 [ Y 2 v o+ Yy o+ } (2.99e)
00 02 20
v 3
and
2,2 =[ 8/ Bigx + 2o][ 8/ Blgx + 2o + 1 | . (2.100)

Spatial maps of the field strengths and polarizations for this solution are
shown in Figure 2.7.

In general, a solution can be constructed from the n+l
eigenvector—functions belonging to the principle eigenfunction index n when
n is odd. The nth solution has rotational symmetry about the z axis and
the magnetic field has (n+l)/2 radial nodes. The frequency of the nth

solution is given by

Qu? = [ 2/ Bhgy (n+l) + 2,][ 2/ Bhgy (n¥l) + 24 + 1] (2.101)

D. Strong Gradient Limit, /—ET:; >l

If the magnetic field gradient is so large that the exchange
interaction completely dominates the behavior of the magnetization, the
magnetization can be approximated by any of the eigenvector-functions which

can have a zero eigenvalue. The solutions are

- €a_n_+ !
By on+=_X7Y on (x)oqn (¥) (2.102)
<y Tz Ll oy
and the frequencies are given by
Qnn + =7 Brlex (2ny + 1) + vV Bylay (2ny + 1)+ Z, (2.1C3)

xy
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Figure 2.7. Fields for n=3 solution. (a) Magnitude and polarization of ;,
(b) Magnitude and polarization of h, (¢) tMagnitude of e,.
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Here, as in the one-dimensional field profile of Section III.D.3, the
magnetization of each mode is right hand circularly polarized.

It is interesting to note that when By and By differ slightly, the
spectrum of resonances given by equation (2.103) consists of a series of
multiplets qualitatively very similar to those observed by Cooley in a disk
(37). However, in order for the resonances to differ by only a few
megahertz for YIG (f; = 5 GHz) we must have VBlgy, = 1073, or B = 3(105)
cm™2. We conclude that although the qualitative behavior of equation
(2.103) is very suggestive, it is extremely unlikely that field gradients
of this magnitude existed in the experiment reported by Cooley! This
disagreement results in part from our neglect of surface magnetic poles
which in the magnetostatic modes of a disk, as in the Walker modes of a
sphere (69), play a dominant role in determining the mode characteristics.
It is therefore possible that Cooley's results could be explained by a

similar analysis if the effects of finite sample edges were included.

E. Weak Gradient Limit vBlgy << 1

When terms of order /Ei;; can be neglected, combinations of
eigenvector=functions from adjacent principle eigenfunction indices may be
considered as a trial solution. Clearly the "exact” solutions of Section
IV.C are also valid in this limit when By = By. In addition, similar
solutions can be found when B, # By if che fields are rederived taking
into consideration that a, # ay (this will destroy the symmetry and
elongate the mode patterns in the direction of the weakest gradient).

Since we are no longer restricted to eigenvector-functions belonging to
the same principle eigenfunction index, the diagrams shown in Figure 2.8

may now be considered. Notice that the diagrams shown in Figure 2.8(a) and
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Figure 2.8. Curl diagrams for combinations of n = 0 and n = 2
eigenvector~functions.




2.8(b) transform into one another under the interchange of x and y. Thus
the two solutions are equivalent under a rotation of n/2 about the z
axisl. It is sufficient, then, to consider the solution represented by
Figure 2.8(a).

Following a now familiar procedure, the fields corresponding to Figure

2.8(a) are found to be

= Coo+ 3+ -1 a4 - ~a+ 2.104a)
7 20k (15 lvgg T X (145w T 2 (12} (
= lcoo+ at -1 a4+ - ay 2.104b
my _‘%.{[H-;:]woo _:xz (-2, /2 [1+2t]vg,} ( )
hy = =lcgo+’2 a+ %y ¥y (2.104¢)
Gx
hy = ic Y2 a4 /Ty ) (2.104d)
y = oo+ 72 a+ldy, )
and
Q2 = 24(24 + 1), (2.105)

where a4 = Z, - Q0. Spatial maps of the field strengths and polarizations
for this solution are shown in Figure 2.9,
In the weak gradient limit, all solutions near a given n have

approximately the same frequency which for large n is approximately
Q2 = [ 20/ Bhgyg + Zo][2n/ Bhgx *+ Zo + 1] (2.106)

Again, we find that the frequencies of the modes are so closely spaced that

they form a quasi~comtinuum.

TThe diagrams do not explicitly indicate the signs of the quantities
involved. The actual transformation is x + vy, y + =x.




Figure 2.9.

-

-
- - n o - -
R L T

-128-

vy
~<

s rd
-
. LN

L.

. -~
=

o ]
'Y =

—

b Y ST L i 4 ”

-1+

--~ez<0
—8y > 0
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It should be possible to construct additional solutions in such a way
that the solution of this Section and the solutions of Section IV.C in the
limit /Blay << 1 are three of the lowest order solutions of a complete

orthogonal set.

V. Discussion

If exchange were neglected, the dispersion relation for k L H in an
infinite medium (or in a normally magnetized slab between conducting
plates) is simply 92 = 24(Z,+1), independent of 8. Hence in the virtual
surface theory (1,2), at the point in the material where the field and
frequency have this relationship all wavelengths are possible.
Qualitatively, this gives an idea of how a singularity in the field might
be possible at this point.

The addition of exchange, on the other hand, lifts this degeneracy and
results in a one-to-one correspondence between ( and 8, thus eliminating
the possibility of a singularity. In the case of a nonuniform field, the
resulting mode is oscillatory in regions of the sample where propagation is
permitted, and decays rapidly outside of these regions.

This suggests a mechanism whereby a gradient could localize a mode in a
thin slab with the conducting plates removed. As shown in Appendix A, the
effect of the new boundary conditions is to introduce a component of e x h
power flow which, in most cases, dominates the power flow in the exchange
channel. Hence one can imagine a mode which again can propagate in some
regions and not in others, but whose propagation characteristics are

determined completely by the magnetostatic boundary conditions rather than
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exchange. This general concept of mode localization should not be limited
to volume waves, but should apply to other bias field orientations as well.
It is, in fact, the conceptual basis for the surface wave theory described
in Chapter Three.

Finally, two limitations of the present theory deserve mention:

1. In many cases (including that of Eshbach (30)) the magnetoelastic
crossover point occurs within frequencies of interest and cannot be
neglected. The present theory is strictly valid only where this is not the
case.

2. As pointed out in the introduction, these solutions lose their
validity if the turning point occurs near the edge of a finite
width/diameter film. In such a case, the second solution to the harmonic
oscillator equation (which does not vanish at infinity) must be included in

the eigenfunction expansion.

VI. Summary of Chapter

We have extended the mechod of expansion in normal spin wave modes
(17,18) to the case of a two-~dimensional non-uniformly magnetized ferrite
with the effects of exchange included. Using this method, a number of
solutions (both exact and approximate) to the linearized magnetostatic
equations have been obtained.

A consideration of the special case of a one—-dimensional linear bias
field ptof;le and propagation parallel to the gradient showed that the
profile of the magnetization is given by an Airy function. The turning

point of the Airy function was shown to correspond to the location of a
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virtual surface in qualitative agreement with previous work by Morgenthaler
(15). In addition, it was shown that the distance penetrated into the
gradient is roughly proportional to the frequency of the spin wave.

Next, spin wave propagation down a "trough” formed by a one-dimensional
parabolic bias field was considered. It was shown that solutions to the
magnetostatic problem can be constructed from basis vector-functions
consisting of the product of a polarization vector and a Hermite-Gaussian
function. In the weak gradient limit, /EX;; << 1, it was shown that the
wave can be locallized to a very narrow “"trough” (as narrow as 15 um for
B = 12 cm™2) when the frequency is very near the top of the volume wave
manifold. The net Poynting flux was found to be zero, however, indicating
that power can flow only through the exchange channel.

Finally, localized resonances confined by two-~dimensional parabolic
bias field profiles were considered. In this case, basis vector-functions
consisting of the product of a polarization vector and a two-dimensional
Hermite=Caussian function can be used to construct solutions to the
magnetostatic problem. A class of exact solutions (good for any strength
quadratic gradient) was found for the symmetric case By = By.

Both the frequencies and field distributions of the solutions are in
agreement with the spin wave continuum discussed and observed by Eshbach
(30).

These solutions, free of the singularities encountered in the virtual
surface theory, demonstrate that exchange can play an important role ia the

localization of magnetostatic waves in nonuniform bias fields.
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Dispersion Relations for !agnetostatic Waves in Thin Ferrite Films

[. Background

Magnetostatic waves inta ferrite slab with an in-plane magnetic field
were first discussed by Damon and Eshbach (54) in 1961, and waves in a
normally magnetized slab were first discussed by Damon and Van de Vaart
(55) in 1965. since these initial studies, various nodifications have been

made to the basic theories. Some of the most notable of these are:

l. Effects of a nearby parallel ground plane (56-59)
2. Effects of crystalline anisotropy (51,60-64)

3. Effects of finite slab width (38,44,65,66)

In the following sections we derive the general suscepcibility tensor
including anisotropy and exchange and present the basic equations of
magnetostatics. We then derive the basic dispersion relations for the

three principle normal modes of an isolated, isotropic, infinite width

slab. Dispersion relations for ferrite-dielectric-metal and finite width

geometries are also given but without derivation.

IIl. The General Susceptibility Tensor

The equation of motion for the magnetization is given by

M - S ~
a—syu°:1x(H+Ha+Hex) (a.)
t
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where Y = - glel/2m is the gyromagnetic ratio, M is the magnetization, H is
the Maxwellian field, and H, and Hyy are effective fields due to anisotropy

and exchange, respectively. The effective fields are defined by

- 1wl

Hy = - - — (A.2a)
Yo M

Hox = Moy "™ (A.2b)

where W38 is the anisotropy energy density (Section III) and XAqx is a
phenomenological constant equal to approximately 3(10712) cm? for YIG.
Following the usual linearization procedure, thése fields are divided

into static and time varying components as follows:

M=, +m (a.3a)

=
¥
=]
+
o}

(A.3b)
a (A.3¢)
ex ® Hoex * hex (A.3d)

The field io should understood to be the vector sum of the actual
externally applied magnetic field and the internal demagnetizing field, but
we will not explicitly indicate this in order to avoid further notational
complexity. llaking these substitutions into (A.l) and assuming the tinme

variation exp(~iwt) gives
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-iwm _ _ _ _
=My x {Eo + Hog * Hoex] + My x fﬁ +hy + hex]
Yu,
+mx [l +H, +Hog] +mx [+ H, + hgy] (A.4)

The equilibrium direction of the magnetization is determined by the

equation

My x [Ho(My) + Hy(My) + Hoay(M) ] = 0 (a.5)

where we have explicitly indicated the dependence of Eo- ﬁSa’ and Hyoy on

go' The dependence of §5 on ﬁs resul ts from the demagnetizing field
mentioned previously. Equation (A.5) represents a set of three coupled,
nonlinear, simul tanious equations which are, in general, quite difficult to
solve., They have a rich family of solutions, however, including Bloch
walls and bubble domains.

At present we are primarily interested in single domain materials in
which case Hpey vanishes by (a.2b). If in addition, IH,| >> |H,|, we can
assune ﬁo I Hb. This approximation is valid for many cases of interest,
but should be examined closely for lower microwave frequencies and strong
anisotropies.

Making the strong field approximation and neglecting terms second order

in small quantities enables us to write (A.4) in the form

igm =z x [y2m + N&on + b = (2, + Z,)W] (A.6)

where we have introduced several new quantities:
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[
Q= - — (A~7a)
YugMo

}—-‘a = a . ; (A'7b)

Z, = Hy / M, (A.7¢)

Zy =Hgy * 2z /M, (a.7d)
) 32 32

v = - 4 —— (A.7E)
t w2 ay2

and we have chosen the coordinate system so that the equilibrium
magnetization points along the ; direction. The form of the small signal
anisotropy field is justified by noting that this field will only be
pr:sent if there is some deviation from the eguilibrium direction of 'f.
Keeping only the ; component of ioa {s justified since the other components

give rise to an m, which we neglect as a seconi order quantity.

Solving for h in (A.6) glves

h=ag, o (A.8a)
where
a 2 a
- Ty + 23 = Ny = Ay ¥, 19 = Nyy
Agp = (A.8b)
a a 2
=10 = Nyy Zo + 2,3 = Nyy = Aex7¢

This operator (with anisotropy set to zero) is the starting point for the

2xchange calculations of Chapter Twn.
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If exchange is neglected, equation (A.8) can be easily inverted to
obtain the Polder susceptibility tensor

m=yx-h (A.9a)
where
a
Xox = (2o + 25 - Nyy)/D (A.9b)
a
Xxy = (-i9 + ny)/D (A.9c)
a
Xyx = (12 + Ny )/D (A.9d)
a
Xyy * (Zy + 2, = Nyy)/D (A.9%e)

a a
D= (Zg + 25 = Nyy)(Zg + 23 = Nyy)

a a
= (19 + Np ) (12 + Ny (A.96)

)

Ba jpai, et al. (63) have derived an expression analogous to (A.9) for
= =
the permeability tensor (I + y) for an arbitrary orientation of the dc bias
field. Their result is ircorrect, however, since their tensor is not
Hermitian (this is a requirement since their calculation does not include
loss).

If anisotropy is neglected, the susceptibily reduces to the familiar

- X -ix
X = (4.9g)
i X

where z 2

torm
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III. The Effective Anisotropy Field (67)

We consider here the anisotropy in a cubic ferromagnet. Such a model
is appropriate for single crystal bulk YIG, but inevitably YIG thin films
also exhibit a stress—induced uniaxial anisotropy due to the slight lattice
mismatch between the YIG and GGG substrate. This mismatch can be
minimized, however, by doping with suitable nonmagnetic impurities (68).

For a cubic ferromagnet, the anisotropy energy density to lowest order
is given by

K
WA = — M M2 + My A192 + My M52 (A.10)
Mo
where the subscripts (1,2,3) refer to the principle crystal axes. The

effective anisotropy field is defined by

- 1 we
Hy = =~ — —
bo aM
Ml(Mzz + {‘132)
2K
= - = | MMy 2 + M32) (A.11)
uglo

M3(M;2 + Mp2)

separating the static and time varying components and keeping terms to
first order in m gives
Mo1(tg22 + Mo3?)

2K = _
Mpa(llgy 2 + My3?) + N@ + q (A.123)

Ha a -
uo”o“
Mg3(Mg 2 + Mo2?)
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where a 2K
Ni; = - (M2 - M,,2)
ii N Q ol
Uolo
a 4K . )
Nij == = aMoi Moy 5 1%

uto

(A.12b)

(A.12¢)

Again, these quantities are expressed in terms of the ma jor cubic axes of

the crystal. In order to obtain the corresponding quantities in the xyz

system defined in terms of the direction of the applied magnetic field, we

use the transformation matrix T:

Hy'

Nat

where
T1y
T21
T3
Ty2
T22
T32
T3
723

T33

and A,9,f are the

-T‘Na-‘r"l

= cosO cos¢ cos§ - sing sing
= ~ging cosf - cosB cos¢ sing
= s5in6 cosé¢

= c0s6 sin¢d cos§ + cos¢ sinf
= cos¢ cos§ - cosf sing siné
= sinf sing

= - 5in® cos§

= sin8 sing

= cosH

Euler angles relating the two coordinate systens.

(A.13a)

(A.13b)

(A.13¢)
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IV. Walker's Equation and Magnetostatics

Maxwell's equations in the magnetostatic limit are
Yxh =0 (A.l4a)

- (ma+h) =0 (A.16b)
Using (A.9) and introducing a magnetostatic scalar potential allows us to

combine (A.l4) into a single equation:

33[815 + xg3]35w = 0 (A.15)
where h = - 9y, 3y = 3/¥&xj, and sums over repeated indices are implied.

Expanding this equation gives

{3 [ Ubaex) 3 + Xy dy ] + 3y [(L4xgy)dy + xyedy] + 3,2}p = 0 (A.16)

=
If x is not a function of position this can be written

a
Wy
[bxgen) 32 + (1+xyy)ay2 + 3,2 + — ddgly =0 (A.17)

yi

a a
where we have used the fact that ny = Nyx' Note that the presence of the
cross term in (A.17) significantly complicates the solution of this
equation. All of the correct existing calculations involving anisotropy of
which the author is aware have been done in selected coordinate syvstems
in which Niy vanished. Unfortunately, there are many coordinate systems of
practical interest in which this is not the case.

Because of the computational difficulties involved with anisotropy we
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will not consider it further. In the absence of anisotropy, (A.l7) reduces

to the Walker equation (69)
[+ (32 + 3,2) + 2]y = 0 (A.18)

This result, combined with the requirement that tangential h and normal b
be continuous across all boundaries, completes the formulation of the

magnetostatic boundary value problem.

V. Dispersion Relations for Magnetostatic Waves in Ferrite Slabs

The following calculations neglect both exchange and anisotropy.
A. Surface Waves
Consider the geometry of Figure A.l. In air, Walker's equation reduces

to Laplace's equation so the potential in the three regions can be
P g

expressed
W o= a e-kx * Lvky (A.19a)
s U I I (A.19b)
JIL o p o8 T IV (A.19¢)

where v = ] and k is taken to be positive definite.
Continuity of tangential h requires the potential to be continuous
across the surfaces of the ferrite giving rise to the equations

-kd/2 -kd/2 kd/2
Ae =B e +C e . (A.20)

-kd/2 kd/?2 ~kd/2
B e +C e (A.21)

D e
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Figure A.l. Surface and backward volume wave geometry.
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Similarly, continuity of normal b gives

-kd/2 kd/2 ~kd/2 -kd/2 kd/2
- Ae = (l+y)(Ce - Be ) + vk(Be + Ce ) (A.22)

-kd/2 -kd/2 kd/2 kd/2 -kd/2
De = (1+y)(Ce - Be ) + vk(Be + Ce ) (A.23)
The dispersion relation is obtained by setting the determinant of the
ccefficient matrix of the simul taneous homogeneous equations (A.20)-(A.23)

equal to zero. The result is

-2lkid

Q2 = 2(Z+1) + (l=e Y/4 (A.26a)

1
or el = - i n(6z(2+1) - 402 + 1] (A.24b)

The absolute values emphasize the fact that although surface waves exhibit

field dispiacement nonreciprocity, the dispersion relation is reciprocal

~

for propagation in the * v directions. Equation (A.24) is plotted

qualitatively in Figure A.2.

B. Backward Volume Waves

The geometry for backward volume waves is also given by Figure A.l,

-

except that propagation is assumed along the * z directions rather than

along t yv. Let us first consider even modes (ie., modes in which W(x) is

even). The potential in the three regions can be written

I -kx + i vkz
(A.25a)

—
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11 ivkz
v =B coskyx e (A.25b)

I1I kx + ivkz
v =Ce (A.25¢)

Substituting (A.25b) into Walker's equation (A.18) gives the following

relationship between k, and k:

k

= (A.26)
Y =(1l+y)
The radical is real since l+x < 0 in the volume wave manifold.
Requiring ¢ to be continuous at x = * d/2 gives
~kd/2
Ae = B cos(kyd/2) (A.27)
~-kd/2
Ce = B cos(kyd/2) (A.28)
while the boundary condition on normal b gives
-kd/2
-k Ae = =B ky (1+x) sin(kyd/2) (A.29)
-kd/2
k Ce = B ky (l+x) sin(kyd/2) (4.30)

The dispersion relation can be obtained by combining either (A.27) and

(A.29) or (A.28) and (A.30). The result for even modes
cot(kyd/2) = = ¥ =(l+x) (A.31)

lote that al though there is only one surface wave mode, there are a

multiplicity of backward volume wave modes given hy the roots of (A.31).
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The odd modes can be obtained by assuming a new form for e
II {vkz
v =B sin(kyx) e (A.32)

Repeatihg the above application of the boundary conditions gives

(A.33)

cot(k,d/2) =
V=(1+x)

A single compact equation containing both the even and odd modes can be

obtained by mul tiplying (A.31) and (A.33) and applying the identities

l + cosH

cot29/2 = (A.34a)
1 - cos®
1 + cos8

cord/2 = (A.34b)

sind
The result is
2cot(kyed) = - V=(l+y) (A.35a3)

~(1+x)
This is the form first given by Damon and Eshbach. Equations (A.3l) and
(A.33) can be combined in an even simpler way, however, by using the
identity tan(8+w/2) = -cot8. The result is

l

tan{(kyd + nm)/2] = - ;no= 0,1,2, . . (A.35b)

Y=( 1+y)
Clearly for all even integers this is equivalent to (A.31) while for odd
tategers it gives (A.33). The backward volume wave spectrum as given by

(A.35) is illustrated qualitatively in Figure A.3.
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Figure A.3. Backward volume wave mode dispersion diagram
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Forward volume waves propagate in a normally magnetized slab as

illustrated in Figure A.4.

In the absence of anisotropy, the propagation

of forward volume waves is isotropic in the plane of the slab. We

-

therefore arbitrarily choose propagation in the * y directions.

For even modes, the potential in the three regions is of the form

1 ~kz + ivky

Yy = A e

II

ivky

¢ =B cos(k,z) e

I1I kz + ivky

Requiring ¢ to be continuous at z =

~kd/2

t d/2 gives

Ae = B cos(k,d/2)

~kd/2

Ce = B cos(k,d/2)

and matching normal b at these boundaries gives

-kd / 2

-kAe = -B k, sin(k,d/2)

~kd/2

kCe =B k, sin(k,d/2)

(A.36a)

(A.36b)

(A.36c)

(A.37)

(A.38)

(A.39)

(A.00)

Combining either (A.37) and (A.39) or (A.38) and (A.40) gives the

dispersion relation for even modes

tan(k,d/2) =

1

v/~ l*x)

(A.al)
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Figure A.4. Forward volume wave geometry.
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where from Walker's equation
kp = k /~(1+y) . (A.42)

As before, the odd modes can be obtained by redefining WII:

W1l = B sin(k,z) elvky (A.63)
The result is
1
—cot({k,4/2) = —————m— (A.46)
v =(l+y)

As in the backward volume wave case, the even and odd modes can be combined

in a single equation using tan(8+w/2) = =cot® to obtain

1
tan[k,d/2 + an/2 | = =—-e— (A.45)

Y =( l+x)
The magnetostatic forward volume wave spectrum is illustrated in Figure

Add.

D. Effects of an Adjacent Parallel Ground Plane

Some physical insight into the effects of placing metal in contact with
one face of a ferrite slab can be obtained through the use of the image
theorem. As illustrated in Figure A.6, magnetic dipoles parallel to a
nertect electric conductor are imaged without inversion, whereas the images
>f dipoles normal to the surface are inverted (70).

[n the case of forward volume waves, the rf magnetic dipoles are alwavs
crraliel to the ground plane and so theyv are imaged without inversion.

“Hence the modes are identical to the even modes of a slab twice as thick
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Figure A.5. Forward volume wave dispersion diagram.

Figure A.v . lagnetic dipoles imaged by a perfect electrical conductor.
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without a ground plane.

Reference to (A.24), (A.35) and (A.45) reveals that for a fixed
frequency, k = 1/d for all three types of modes. Since the band edge at
k=0 does not depend on d, this implies that thicker slabs sustain faster
modes. Hence the presence of a conducting plate increases the velocities
of forward volume waves.

In the case of surface waves and backward volume waves, the rf magnetic
dipoles have components both perpendicular and parallel to the metal
surface. As a result, the effect on the wave propagation is more complex
than simply doubling the thickness. However, the qualitative result that
the presence of the conducting plate increases mode velocities is still
correct.

The case of a metal surface placed a finite distance away from the slab
can be understood in terms of a transition between the limiting cases of a
conducting surface in contact with the slab, and the conducting surface
completely removed.

Due to the consequences of Laplace's equation, the magnitude of the
potential outside of the slab always decays as exp(-kL), where k is the
wavenumber and L is the distance along the slab normall. Aas a consequence,
for small k the metal will appear electrically as if it were in contact
with the slab, while for large k the mode will not be affected by the
metal. Intermediate values of k will be characterized by a smooth

transition between these two limits.

IThe form of the decay away from the surface becomes hore complicated if
the bias field is not uniform (see Chapter Three).




If d/L << 1 where L is the is the separation between the slab and the
metal, only waves with small k will be affected. The results are
illustrated qualitatively in Figure A.7. The actual dispersion relations
for the three modes are given below, with the corresponding geometries

illustrated in Figure A.8.

MSSW (57):

21kld 1 r1+(Qv+Z)[1+tanh(-|k|L)]] (Aat6)
N 2(QwZ)+1 H-(nva)u-:amﬂ—lku)l )
where ¢ = elvlkly ;ovo= ],
MSBVW (59):
cot| = (A.47)

Y(1+y) 2Y=(1+y)

where ¢ « eiviklz ; y = ¢,

MSFVW (58):

—_ l+x+tanh( I k|L)
~cot[=/=(1+y)|kld] = e (A.48)

/=(1+y) [tanh([kIL)+1]

iV'k,xi
where ¢ = e povom ol xg o= (X,5).
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E. Effects of Finite Slab Width

Generally speaking, introducing a finite width to the ferrite slab has
the effect of adding a transverse component to the total k vector. In
other words, we view the mode as consisting of a plane wave propagating at
an oblique angle and bouncing back and forth down the slab.

As in Section V.D, the forward volume waves are again easier to
understand. In the present case this is because the propagation is
isotropic in the plane of the slab. Hence the frequency depends on the
transverse component of k (k,) in exactly the same way as the longitudinal
component (kg). The transverse component is quantized and held relatively
constant by the boundary conditions while the longitudinal component
depends strongly on frequency. Hence ky is negligible when ky is large,
but k. dominates for kg + O.

The various quantized values of k, give rise to an infinite number of
nodes which, when combined with the various modes corresponding to
thickness variations, comprise a mode family entirely analogous to the
nodes of a rectangular metallic electromagnetic waveguide.

The effect on surface waves is more complicated, however, since
propagation in the plane is not isotropic. As a result, when kg is small
and ke dominates, the wave has a volume wave character, whereas when kj
dominates the surface wave character {s restored. Hence the finite width
induces a volume wave band near the band edge where kg + O.

To the author's knowledge, no calculation of the width effects on

backward volume waves has been done to date. However, it seems very likelv




that a similar argument to the above could be made in favor of the
existence of width-induced surface waves near the low-k band edge. It
would be expected that these surface waves should show backward wave
character.

For d/w << 1, where w is the slab width, only the spectrum near kg¢+0
will be affected. The qualitative propagation behavior for surface and
forward volume waves for this case is illustrated in Figure A.9. The
presence of a ground plane such that d/L << | is also assumed. The
dispersion relations for these cases are given below. It should be noted
that both of these results are based on the somewhat artificial assumption
of spin-pinning at the edges of the sample (44,65); the electromagnetic
boundary conditions at the edges have not been rigorously satisfied. An
integral equation formulation which rigorously satisfies these edge
boundary conditions has been described by Morgenthaler (38,66).
Unfortunately, the solution to the integral equation is not available in

closed form.

MSSW (44) (width—induced volume waves excluded):

Md 2 Qvlk[+(Z22-Q2)(M-N)
ZM=Qulk 14+(Z2-Q2) (M)

ZM-Quik | +(2 ZQ2) (M-Ntanh(NL) |
x
IMHQUIk | +(2 2 Q2) [M+Ntanh(NL) ]

(A.49)

where M2 = [nw/w]z/(1+x) +k?2 , N2 = [nw/w]z + k2
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and ¢ = eivikly ; vo= xl,
MSFVW (65):
2 2
ag? - aqy°tanh(ayl)
cot(agd) = (A.50)

aea [ tanh( clL)+1 ]
where ag? = ~(1+y) (k2Hnn/w)2] , a2 = kZ + (an/w) 2,

and ¢ = elvlkly s v o= o],




APPENDIX B

Harmonic Oscillator Mathematics

A. One-dimensional Harmonic Oscillator

l. The equation for a one-dimensional quantum mechanical harmonic

oscillator can be written

32(x) 2¢ - x2 - (B.1)
.s;gx + [;‘2 .’(‘;:]nb(x) 0

where a is a characteristic length defined in the context of a particular
problem. In natural or normalized units the equation assumes the form

324(E) + (2e - ED¢p(E) = O (B.2)
g2

where £ = x/a.

Z. The eigenfunctions of (B.il) which vanish at infinity are given

by the Hermite-Gaussian functions

-x2/2a2
Ha(x/a) e
tn(x) = (8.3)
(a 20 n! /;)1/2

where Ho(£) is the nth order Hermite polynomial (see (B.9)). The
corresponding solutions to (B.2) are given by

- 2/2
- Hy (&) e :

da(8) = (B.4)

(20 nt Jq )1/2




The eigenvalues belonging to either eigenfunction are

€e=n+1/2 , n=20,1,2, ... (B.5)
3. Hermite polynomials are solutions to the equation
d2H, - 2EdH, + 2nH, = 0 (B.6)
dg? dg
4. The Hermite polynomials can be expressed
Ha(g) = [dn e™s™2sE) ®.7)
dsn s=0
where
-sZ+2s¢
F(s,E) = e (B.8)

is the generating function for Hermite polvnomials. The first few Hermite

polynomials are

Hy(g)= -12£+8¢3

Ho(g)= 1
H)(g)= 2§ Hy(E)= 12-48g2+16€% (B.9)
Ho(g)= =2+4g2 Hg(g)= 120£-~160€2+32¢5
5. Useful recurrence relations for Hermite polynomials are
dHy = 2nHn- (8.10a)
dg
(B.10b)

Hot|™ 28Hy - ZnHge
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6. The orthogonality integral for Hermite polynomials is
hy 2
[ Hu(EH (E)e™8%dE = 6, 20 n!vw (B.11)
-

7. The orthonormality of the Hermite-Gaussian functions (B.3) and
(B.4) can be easily demonstrated using (B.ll):

] «

[ dE n(E)og(E) = [ dx ¢q(x)ogl(x) = Spn (B.12)

8. The derivative of the Hermite-Gaussian ¢(x) can be obtained

using (B.3) and (B-10):

den(x) = mn-l'/i— ot [l ] (8.13)
dx a 2 2

-

9. A measure of the spatial extent of the functions ¢n(x) is given

by the location of the turning point of equation (B.l) defined as

2e - x¢p?/aZ =0 (B.14a)

Combining this with (B.5) gives

Xep = af 2n+l (B.14b)

8. Two~dimension Harmonic Oscillator

1. The equation of a two-dimensional quantum mechanical harmonic

vscillator is

2,232y + @, 232y + (2e = x2 - y2 )y =0 (B.15)
Ix 2 ‘ 3Y2 GKZ (’)«'2
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Assuming a product function for ¥, this separates into two one-dimensional

harmonic oscillator equations

%4, 4 28 - x?2 =0 (B.16a)
= RN
32¢, 4 [28y - y2 -0 (B.16b)
—a;gy [gg %hlay

where € = g, + ey.

In the case of ecuation (2.80)(Chapter Two), we have

Efé' + Efg = (a + Q0 - 25)/Aax (B.l6¢c)
=y

where ay = (Agy/By) !’/ and oy = (Xex/By)I’“.

2. The eigenfunctions of (B.15) which vanish at infinity are
simply products of one-~dimensional Hermite-Gaussians as indicated by

(B.16). We have
'bn n (K,Y) = ¢n (x)¢n ()’) (Bel7)
Xy X y
where bni(xi) is given by (B.3).

3. The orthonormality of the functions ¥, , 1is easily
Xy

Jemonstrated using (B.l17) and (B.11). The result is

K o
[dax [ dy ¥g n ¥mm = 6a ,m Sa.m (B.18)
cm - X'y xy Xy Xy
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n
C. Properties of the Generalized Functions ¢m(2)

l. For the analysis of Chapter Three, it is convenient to introduce
the generalized one-dimensional Hermite-Gaussian function:

-22/2an2
n  Hglz/ay) e
tn(z) = — (B.19)
(an 2 gt/ )1/2

These functions represent the set of m solutions to n different harmonic

oscillator problems.

n
The functions ¢,(z) are shown in Chapter Three to be solutions of the

equation

a n
3_22“(2) + (A-Bz2)A2¢,(2) = 0 (B.20)
9z

where A2 = B(2n+1)2/A% [ and o = /__A .
B(2n+1)

n
2. The functions ¢,(z) are not, in general, orthogonal:
= n r
[ & tn(2)eq(z) 20 (B.21)

This is simply because for n # r the functions are solutions to different
harmonic oscillator problems. It follows that functions having the same
characteristic lengths (ie., n=r) are orthonormal:

® n n
[ & én(z)0q(2) = 8pq _ (B.22)
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n
3. The derivative of ¢p(z) is given by

n n n
3gn(z) = 1 [m-l/E = b L) (B.23)
3z n 2 2
2
4. The quantity z4¢,(z) is needed for the integral ecquation theory
of Chapter Three. This quantity can be expressed in terms of the second
n
derivative of ¢, by use of the differential equation (B.20a). The result
is

n n n
z26n = ay*28n + A4y (B.24)
322 B

The second derivative can be obtained by differentiating (B.23). This

gives
n n n n
_gfgn = /n(n-1) bn-2 = 2n+l) ¢y + Y(n+l)(n+2) ¢n42 (B.25)
3z Zunz Zan Zan

Substituting (B.25) and (B.20c¢) into (B.24) gives the final result

n n n n
220y = AM(n=D) op-2 + _A 6q + A/(aFD) (n¥2) én+2 (B.26)
2B(2n+l) 28 2B(2n+1)

n
5. The Fourier Transform of ¢n(z) is defined as

n =-igz n
() = [ &z e dm(2) (B.27)

It is computationally convenient to define the normalized variables u=ga,

and £=/a,. Making these substitutions and using (8.19) vives
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Control of the Frequency of Energy Circulation of
Magnetostatic Modes in a Sphere

The SM thesis of Mr. Daniel A, Fishman, now nearing completion, is concerned
with the control of frequency at which magnetostatic mode energy circulates in
a YIG sphere; the uniform precession is of particular interest.

A nortion of the thesis proposal is given below:

The use of ferrimagnetic materials, particularly YIG spheres, in microwave
magnetically tunable filters is widespread. In general these devices have good
power handling characteristics. It is proposed that this is due, in part, to
the fast velocity of energy circulation of the modes, (analogous to the group
velocity for plenes waves), and that this works to prevent low power limiting.
However, it has been shown by Morgenthaler that this velocity can be altered by
changing the specific electromagnetic boundary conditions. The situation where
this boundary condition is of the form of a concentric conducting spherical shell,
is studied theoretically and approximated experimentally. The theoretical
analysis indicates that there is a critical ratio, between the radius of the YIG
sample and that of the conducting spherical cavity, where the velocity will become
zero, These calculations did not include the electromagnetic losses that arise
in the experimental situation, thus the velocity approaches zero at this ratio.

In addition to the effect of the energy velocity upon signal delay times, there

is the effect of decreasing the critical power threshold for nonlinear effects.
The onset of instabilities in the uniform precession of the magnetization is due
to a level of rf energy density inside the sample which exceeds a certain critical _

value. A decrease in energy velocity could be expected to decrease the amount of %
incident power required to obtain this critical enerby density.

The object of this work is to observe the predicted effects the velocity of
energy circulation may have on the anset of spin wave instabilities and other

nonlinear effects.
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